Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34247

Optimal triplicator design applied to a geometric phase vortex grating


Vista previa

Ver/Abrir:
 oe-27-10-14472.pdf

2,84 MB
Adobe PDF
Compartir:
Título :
Optimal triplicator design applied to a geometric phase vortex grating
Autor :
Marco, D.
Sánchez López, María del Mar  
Cofré, A.
Vargas, A.
Moreno, Ignacio
Editor :
Optica Publishing Group
Departamento:
Departamentos de la UMH::Ciencia de Materiales, Óptica y Tecnología Electrónica
Fecha de publicación:
2019-05-13
URI :
https://hdl.handle.net/11000/34247
Resumen :
In this work, a geometric phase liquid-crystal diffraction grating based on the optimal triplicator design is realized, i.e., a phase-only profile that generates three diffraction orders with equal intensity and maximum diffraction efficiency. We analyze the polarization properties of this special diffraction grating and then use embedded spiral phases to design geometric phase vortex diffraction gratings. Finally, the fabrication of a two-dimensional version of such a design using a micro-patterned half-wave retarder is demonstrated, where the phase distribution is encoded as the orientation of the fast axis of the retarder. This proof-of-concept element is made of liquid crystal on BK7 substrate where the orientation of the LC is controlled via photoalignment, using a commercially available fabrication facility. Experimental results demonstrate the parallel generation of vortex beams with different topological charge and different states of polarization.
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1364/OE.27.014472
Aparece en las colecciones:
Artículos - Ciencia de los materiales, óptica y tecnología electrónica



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.