Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34244
The Existence of Isolating Blocks for Multivalued Semiflows
Ver/Abrir: JDDE2024.pdf
524,58 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : The Existence of Isolating Blocks for Multivalued Semiflows |
Autor : Moreira, Estefani M. Valero, José |
Editor : Springer |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2024-01-19 |
URI : https://hdl.handle.net/11000/34244 |
Resumen :
In this article, we show the existence of an isolating block, a special neighborhood of an
isolated invariant set, for multivalued semiflows acting on metric spaces (not locally compact). Isolating blocks play an important role in Conley’s index theory for single-valued
semiflows and are used to define the concepts of homology index. Although Conley’s index
was generalized in the context of multivalued (semi) flows, the approaches skip the traditional construction made by Conley, and later, Rybakowski. Our aim is to present a theory of
isolating blocks for multivalued semiflows in which we understand such a neighborhood of
a weakly isolated invariant set in the same way as we understand it for invariant sets in the
single-valued scenario. After that, we will apply this abstract result to a differential inclusion
in order to show that we can construct isolating blocks for each equilibrium of the problem.
|
Palabras clave/Materias: Isolating block Multivalued semiflows Differential inclusions Conley’s index |
Área de conocimiento : CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1007/s10884-023-10339-2 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.