Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34241
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorXu, Jiaohui-
dc.contributor.authorCaraballo, Tomás-
dc.contributor.authorValero, José-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-09T11:46:24Z-
dc.date.available2025-01-09T11:46:24Z-
dc.date.created2024-
dc.identifier.citationSIAM Journal on Mathematical AnalysisVol. 56, Iss. 1 (2024)es_ES
dc.identifier.issn1095-7154-
dc.identifier.issn0036-1410-
dc.identifier.urihttps://hdl.handle.net/11000/34241-
dc.description.abstractThis paper is mainly concerned with a kind of fractional stochastic evolution equations driven by L\'evy noise in a bounded domain. We first state the well-posedness of the problem via iterative approximations and energy estimates. Then, the existence and uniqueness of weak pullback mean random attractors for the equations are established by defining a mean random dynamical system. Next, we prove the existence of invariant measures when the problem is autonomous by means of the fact that H\gamma (\scrO ) is compactly embedded in L2 (\scrO ) with \gamma \in (0, 1). Moreover, the uniqueness of this invariant measure is presented, which ensures the ergodicity of the problem. Finally, a large deviation principle result for solutions of stochastic PDEs perturbed by small L\'evy noise and Brownian motion is obtained by a variational formula for positive functionals of a Poisson random measure and Brownian motion. Additionally, the results are illustrated by the fractional stochastic Chafee--Infante equations.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent52es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFractional Laplacian operatores_ES
dc.subjectLévy noisees_ES
dc.subjectBrownian motiones_ES
dc.subjectweak mean random attractorses_ES
dc.subjectinvariant measureses_ES
dc.subjectergodicityes_ES
dc.subjectlarge deviation principlees_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias purases_ES
dc.titleDynamics and Large Deviations for Fractional Stochastic Partial Differential Equations with Lévy Noisees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1137/22M1544440es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 SIMA2024.pdf



649,12 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.