Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34241
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Xu, Jiaohui | - |
dc.contributor.author | Caraballo, Tomás | - |
dc.contributor.author | Valero, José | - |
dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
dc.date.accessioned | 2025-01-09T11:46:24Z | - |
dc.date.available | 2025-01-09T11:46:24Z | - |
dc.date.created | 2024 | - |
dc.identifier.citation | SIAM Journal on Mathematical AnalysisVol. 56, Iss. 1 (2024) | es_ES |
dc.identifier.issn | 1095-7154 | - |
dc.identifier.issn | 0036-1410 | - |
dc.identifier.uri | https://hdl.handle.net/11000/34241 | - |
dc.description.abstract | This paper is mainly concerned with a kind of fractional stochastic evolution equations driven by L\'evy noise in a bounded domain. We first state the well-posedness of the problem via iterative approximations and energy estimates. Then, the existence and uniqueness of weak pullback mean random attractors for the equations are established by defining a mean random dynamical system. Next, we prove the existence of invariant measures when the problem is autonomous by means of the fact that H\gamma (\scrO ) is compactly embedded in L2 (\scrO ) with \gamma \in (0, 1). Moreover, the uniqueness of this invariant measure is presented, which ensures the ergodicity of the problem. Finally, a large deviation principle result for solutions of stochastic PDEs perturbed by small L\'evy noise and Brownian motion is obtained by a variational formula for positive functionals of a Poisson random measure and Brownian motion. Additionally, the results are illustrated by the fractional stochastic Chafee--Infante equations. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 52 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Society for Industrial and Applied Mathematics | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Fractional Laplacian operator | es_ES |
dc.subject | Lévy noise | es_ES |
dc.subject | Brownian motion | es_ES |
dc.subject | weak mean random attractors | es_ES |
dc.subject | invariant measures | es_ES |
dc.subject | ergodicity | es_ES |
dc.subject | large deviation principle | es_ES |
dc.subject.other | CDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias puras | es_ES |
dc.title | Dynamics and Large Deviations for Fractional Stochastic Partial Differential Equations with Lévy Noise | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1137/22M1544440 | es_ES |

SIMA2024.pdf
649,12 kB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.