Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34239

Relationships between remarkable points in photovoltaic I–V curves


Vista previa

Ver/Abrir:
 Moreno_Vassart_etAl_2024_Renew.Energy_237_121661.pdf

2,69 MB
Adobe PDF
Compartir:
Título :
Relationships between remarkable points in photovoltaic I–V curves
Autor :
Moreno-Vassart, Xavier  
Toledo Melero, Fco. Javier  
Herranz Cuadrado, Maria Victoria  
Galiano, Vicente  
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/34239
Resumen :
In this work we reveal certain intrinsic relationships between the remarkable points of an I–V curve of a photovoltaic panel. Specifically, we carry out a thorough statistical study to determine the existing interconnections between the open-circuit and short-circuit points with the maximum power point, which constitute the so-called remarkable points of an I–V curve. To accomplish this, we analyse nearly one million I–V curves from the National Renewable Energy Laboratory database of the US. Although we find out clear generic relationships, we also provide concrete expressions that connect the remarkable points with a high level of confidence for each of the technologies analysed, which implies that the open-circuit and the short-circuit points can be estimated only with information from the solar panel operating in real time near the maximum power point. Specifically, we provide the regression coefficients of the linear relationships, as well as empirical bounds covering 95% of the samples for the distributions of the ratios between the remarkable points. The results indicate the high reliability of the given estimates.
Palabras clave/Materias:
Single-diode model
Remarkable points
Key points
Maximum power
Open-circuit point
Short-circuit point
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.renene.2024.121661
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.