Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34236
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorToledo Melero, Fco. Javier-
dc.contributor.authorGisbert, María Jesús-
dc.contributor.authorParra, Juan-
dc.contributor.authorCánovas, María Josefa-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-09T09:18:15Z-
dc.date.available2025-01-09T09:18:15Z-
dc.date.created2018-
dc.identifier.citationJournal of Optimization Theory and Applicationses_ES
dc.identifier.issn1573-2878-
dc.identifier.issn0022-3239-
dc.identifier.urihttps://hdl.handle.net/11000/34236-
dc.description.abstractThe present paper is devoted to the computation of the Lipschitz modulus of the optimal value function restricted to its domain in linear programming under different types of perturbations. In the first stage, we study separately perturbations of the right-hand side of the constraints and perturbations of the coefficients of the objective function. Secondly, we deal with canonical perturbations, i.e., right-hand side perturbations together with linear perturbations of the objective. We advance that an exact formula for the Lipschitz modulus in the context of right-hand side perturbations is provided, and lower and upper estimates for the corresponding moduli are also established in the other two perturbation frameworks. In both cases, the corresponding upper estimates are shown to provide the exact moduli when the nominal (original) optimal set is bounded. A key strategy here consists in taking advantage of the background on calmness in linear programming and providing the aimed Lipschitz modulus through the computation of a uniform calmness constant.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent20es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofseries182es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLipschitz moduluses_ES
dc.subjectOptimal valuees_ES
dc.subjectLinear programminges_ES
dc.subjectVariational analysises_ES
dc.subjectCalmnesses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleLipschitz Modulus of the Optimal Value in Linear Programminges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s10957-018-01456-wes_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 Gisbert_etAl_2019_J.Optim.Theory Appl._182_133-152.pdf

526,62 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.