Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/31598

Environment modeling and localization from datasets of omnidirectional scenes using machine learning techniques


Thumbnail

View/Open:
 16-s00521-023-08515-y (3) (1).pdf

2,68 MB
Adobe PDF
Share:
Title:
Environment modeling and localization from datasets of omnidirectional scenes using machine learning techniques
Authors:
Cebollada, Sergio  
Paya, Luis  
Peidro, Adrian  
Mayol-Cuevas, Walterio  
Reinoso, Oscar  
Editor:
Springer Link
Department:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Issue Date:
2023-03
URI:
https://hdl.handle.net/11000/31598
Abstract:
This work presents a framework to create a visual model of the environment which can be used to estimate the position of a mobile robot by means of artificial intelligence techniques. The proposed framework retrieves the structure of the environment from a dataset composed of omnidirectional images...  Ver más
Keywords/Subjects:
Machine learning
Hierarchical localization
Omnidirectional vision
Global-appearance description
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1007/s00521-023-08515-y
Published in:
Neural Computing and Applications Volumen 35 , páginas 16487–16508, ( 2023 )
Appears in Collections:
Artículos Ingeniería de Sistemas y Automática



Creative Commons ???jsp.display-item.text9???