Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31227
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCandela Esclapez, Alfredo-
dc.contributor.authorLópez García, Miguel-
dc.contributor.authorVALERO, SERGIO-
dc.contributor.authorSenabre, Carolina-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2024-02-07T13:36:27Z-
dc.date.available2024-02-07T13:36:27Z-
dc.date.created2022-05-17-
dc.identifier.citationEnergies 2022, 15, 3670es_ES
dc.identifier.issn1966-1073-
dc.identifier.urihttps://hdl.handle.net/11000/31227-
dc.description.abstractElectrical energy is consumed at the same time as it is generated, since its storage is unfeasible. Therefore, short-term load forecasting is needed to manage energy operations. Due to better energy management, precise load forecasting indirectly saves money and CO2 emissions. In Europe, owing to directives and new technologies, prediction systems will be on a quarter-hour basis, which will reduce computation time and increase the computational burden. Therefore, a predictive system may not dispose of sufficient time to compute all future forecasts. Prediction systems perform calculations throughout the day, calculating the same forecasts repeatedly as the predicted time approaches. However, there are forecasts that are no more accurate than others that have already been made. If previous forecasts are used preferentially over these, then computational burden will be saved while accuracy increases. In this way, it will be possible to optimize the schedule of future quarter-hour systems and fulfill the execution time limits. This paper offers an algorithm to estimate which forecasts provide greater accuracy than previous ones, and then make a forecasting schedule. The algorithm has been applied to the forecasting system of the Spanish electricity operator, obtaining a calculation schedule that achieves better accuracy and involves less computational burden. This new algorithm could be applied to other forecasting systems in order to speed up computation times and to reduce forecasting errors.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent18es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectshort-term load forecastinges_ES
dc.subjectcomputational burdenes_ES
dc.subjectforecasting schedulees_ES
dc.subjectperformance evaluationes_ES
dc.subject.classificationIngeniería Mecánicaes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinariaes_ES
dc.titleReduction of Computational Burden and Accuracy Maximization in Short-Term Load Forecastinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/en15103670es_ES
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía


Vista previa

Ver/Abrir:
 2022 -Energies- MDPI - JCR.pdf

1,99 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.