Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30976

Automatic classification of special days for short-term load forecasting

Title:
Automatic classification of special days for short-term load forecasting
Authors:
López, Miguel
Sanz, Carlos
VALERO, SERGIO  
Editor:
Elsevier
Department:
Departamentos de la UMH::Ingeniería Mecánica y Energía
Issue Date:
2021-09-09
URI:
https://hdl.handle.net/11000/30976
Abstract:
Electricity demand presents a repetitive pattern following daily, weekly and seasonal patterns. However, factors like temperature or social events tend to disrupt these patterns introducing outlying data that is difficult to forecast. This paper introduces a new methodology to classify special days...  Ver más
Keywords/Subjects:
Load forecasting
Power demand
Holidays
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1016/j.epsr.2021.107533
Published in:
Electric Power Systems Research Volume 202, 2022
Appears in Collections:
Artículos Ingeniería Mecánica y Energía



Creative Commons ???jsp.display-item.text9???