Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30686
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAMIGO, JOSE M.-
dc.contributor.authorDale, Roberto-
dc.contributor.authorTempesta, Piergiulio-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-01-26T09:58:46Z-
dc.date.available2024-01-26T09:58:46Z-
dc.date.created2021-01-06-
dc.identifier.citationChaos, 31, 013115 (2021)es_ES
dc.identifier.issn1089-7682-
dc.identifier.issn1054-1500-
dc.identifier.urihttps://hdl.handle.net/11000/30686-
dc.description.abstractPermutation entropy measures the complexity of a deterministic time series via a data symbolic quantization consisting of rank vectors called ordinal patterns or simply permutations. Reasons for the increasing popularity of this entropy in time series analysis include that (i) it converges to the Kolmogorov–Sinai entropy of the underlying dynamics in the limit of ever longer permutations and (ii) its computation dispenses with generating and ad hoc partitions. However, permutation entropy diverges when the number of allowed permutations grows super-exponentially with their length, as happens when time series are output by dynamical systems with observational or dynamical noise or purely random processes. In this paper, we propose a generalized permutation entropy, belonging to the class of group entropies, that is finite in that situation, which is actually the one found in practice. The theoretical results are illustrated numerically by random processes with short- and long-term dependencies, as well as by noisy deterministic signals.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent9es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLogistic mapes_ES
dc.subjectEntropyes_ES
dc.subjectSignal processinges_ES
dc.subjectStatistical mechanicses_ES
dc.subjectStochastic processeses_ES
dc.subjectTime series analysises_ES
dc.subjectBrownian motiones_ES
dc.subject.classificationLenguajes y sistemas informaticoses_ES
dc.subject.otherCDU::0 - Generalidades.::04 - Ciencia y tecnología de los ordenadores. Informática.es_ES
dc.titleA generalized permutation entropy for noisy dynamics and random processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1063/5.0023419es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 Chaos21_2021.pdf



836,89 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.