Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30682

Blockchain metrics and indicators in cryptocurrency trading


Vista previa

Ver/Abrir:
 1-s2.0-S0960077923012079-main.pdf

2,56 MB
Adobe PDF
Compartir:
Título :
Blockchain metrics and indicators in cryptocurrency trading
Autor :
King, Juan C.
Dale, Roberto  
AMIGO, JOSE M.  
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2023-11-22
URI :
https://hdl.handle.net/11000/30682
Resumen :
The objective of this paper is the construction of new indicators that can be useful to operate in the cryptocurrency market. These indicators are based on public data obtained from the blockchain network, specifically from the nodes that make up Bitcoin mining. Therefore, our analysis is unique to that network. The results obtained with numerical simulations of algorithmic trading and prediction via statistical models and Machine Learning demonstrate the importance of variables such as the hash rate, the difficulty of mining or the cost per transaction when it comes to trade Bitcoin assets or predict the direction of price. Variables obtained from the blockchain network will be called here blockchain metrics. The corresponding indicators (inspired by the ‘‘Hash Ribbon’’) perform well in locating buy signals. From our results, we conclude that such blockchain indicators allow obtaining information with a statistical advantage in the highly volatile cryptocurrency market.
Palabras clave/Materias:
Time series
Blockchain
Bitcoin
Cryptocurrency
Hash ribbon
Hash rate
Algorithmic trading
Prediction
Machine learning
Adaptive markets
Fundamental analysis
Technical analysis
Mathematical indicators
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.chaos.2023.114305
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.