Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30590
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerrando, Juan Carlos-
dc.contributor.authorSaxon, Stephen-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-01-23T16:02:58Z-
dc.date.available2024-01-23T16:02:58Z-
dc.date.created2023-08-
dc.identifier.citationRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Volume 117, article number 166, (2023)es_ES
dc.identifier.issn1579-1505-
dc.identifier.issn1578-7303-
dc.identifier.urihttps://hdl.handle.net/11000/30590-
dc.description.abstractSince Tychonoff spaces X serve as continuous Hamel bases for the strong dual Lβ (X) of Cp (X), an old splitting theorem proves: Cp (X) is distinguished ⇔ Lβ (X) has the strongest locally convex topology (slctop) [Ferrando/Ka˛kol]. Our new splitting theorem: The span LX (Y ) of Y ⊆ X complements LX (X\Y ) in Lβ (X). Thereby we prove If X = Y1 ∪· · ·∪Yn and each Cp Yj is distinguished, then so is Cp (X), provided either (i) all Yj are Gδ sets, or (ii) all are Fσ sets. Hence, provided (iii) all Yj are open, or (iv) all are closed. Parts (ii)/(iv) extend to countable unions (known). Part (i) does not, via Michael’s line. Countable case (iii) remains open. A dozen recent related results are proved/improved in our slctop analysis of Lβ (X).es_ES
dc.formatapplication/pdfes_ES
dc.format.extent20es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDistinguishedes_ES
dc.subjectBarrelledes_ES
dc.subjectϕ-complementales_ES
dc.subjectStationary setses_ES
dc.subjectBiduales_ES
dc.subject∑(X)es_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleDistinguished Cp (X) spaces and the strongest locally convex topologyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s13398-023-01498-4es_ES
Appears in Collections:
Artículos Estadística, Matemáticas e Informática


no-thumbnailView/Open:

 RACSAM (2023, Paper 2) (1).pdf



478,59 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???