Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/30590
Distinguished Cp (X) spaces and the strongest locally convex topology
Ver/Abrir: RACSAM (2023, Paper 2) (1).pdf
478,59 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Distinguished Cp (X) spaces and the strongest locally convex topology |
Autor : Ferrando, Juan Carlos Saxon, Stephen |
Editor : Springer |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2023-08 |
URI : https://hdl.handle.net/11000/30590 |
Resumen :
Since Tychonoff spaces X serve as continuous Hamel bases for the strong dual Lβ (X)
of Cp (X), an old splitting theorem proves: Cp (X) is distinguished ⇔ Lβ (X) has the
strongest locally convex topology (slctop) [Ferrando/Ka˛kol]. Our new splitting theorem:
The span LX (Y ) of Y ⊆ X complements LX (X\Y ) in Lβ (X). Thereby we prove If
X = Y1 ∪· · ·∪Yn and each Cp Yj is distinguished, then so is Cp (X), provided either (i)
all Yj are Gδ sets, or (ii) all are Fσ sets. Hence, provided (iii) all Yj are open, or (iv) all
are closed. Parts (ii)/(iv) extend to countable unions (known). Part (i) does not, via Michael’s
line. Countable case (iii) remains open. A dozen recent related results are proved/improved
in our slctop analysis of Lβ (X).
|
Palabras clave/Materias: Distinguished Barrelled ϕ-complemental Stationary sets Bidual ∑(X) |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo documento : application/pdf |
Derechos de acceso: info:eu-repo/semantics/closedAccess |
DOI : https://doi.org/10.1007/s13398-023-01498-4 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.