Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/30589
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Ferrando, Juan Carlos | - |
dc.contributor.author | Kakol, J. | - |
dc.contributor.author | Sliwa, W. | - |
dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
dc.date.accessioned | 2024-01-23T15:57:01Z | - |
dc.date.available | 2024-01-23T15:57:01Z | - |
dc.date.created | 2021-03 | - |
dc.identifier.citation | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Volume 115, article number 90, (2021) | es_ES |
dc.identifier.issn | 1579-1505 | - |
dc.identifier.issn | 1578-7303 | - |
dc.identifier.uri | https://hdl.handle.net/11000/30589 | - |
dc.description.abstract | An internal characterization of the Arkhangel’ski˘ı-Calbrixmain theorem from [4] is obtained by showing that the space Cp(X) of continuous real-valued functions on a Tychonoff space X is K-analytic framed in RX if and only if X admits a nice framing. This applies to show that a metrizable (or cosmic) space X is σ -compact if and only if X has a nice framing. We analyse a few concepts which are useful while studying nice framings. For example, a class of Tychonoff spaces X containing strictly Lindelöf Cˇ ech-complete spaces is introduced for which a variant of Arkhangel’ski˘ı-Calbrix theorem for σ-boundedness of X is shown. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 15 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Cosmic space | es_ES |
dc.subject | K-analytic-framed space | es_ES |
dc.subject | Nice framing | es_ES |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas | es_ES |
dc.title | Bounded resolutions for spaces Cp(X) and a characterization in terms of X | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.contributor.institute | Institutos de la UMH::Instituto Centro de Investigación Operativa | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-021-01029-z | es_ES |
Ver/Abrir:
RACSAM (2021, Paper 3) (1).pdf
359,99 kB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.