Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerrando, Juan Carlos-
dc.contributor.authorKakol, J.-
dc.contributor.authorSliwa, W.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-01-23T15:57:01Z-
dc.date.available2024-01-23T15:57:01Z-
dc.date.created2021-03-
dc.identifier.citationRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Volume 115, article number 90, (2021)es_ES
dc.identifier.issn1579-1505-
dc.identifier.issn1578-7303-
dc.identifier.urihttps://hdl.handle.net/11000/30589-
dc.description.abstractAn internal characterization of the Arkhangel’ski˘ı-Calbrixmain theorem from [4] is obtained by showing that the space Cp(X) of continuous real-valued functions on a Tychonoff space X is K-analytic framed in RX if and only if X admits a nice framing. This applies to show that a metrizable (or cosmic) space X is σ -compact if and only if X has a nice framing. We analyse a few concepts which are useful while studying nice framings. For example, a class of Tychonoff spaces X containing strictly Lindelöf Cˇ ech-complete spaces is introduced for which a variant of Arkhangel’ski˘ı-Calbrix theorem for σ-boundedness of X is shown.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent15es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCosmic spacees_ES
dc.subjectK-analytic-framed spacees_ES
dc.subjectNice framinges_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleBounded resolutions for spaces Cp(X) and a characterization in terms of Xes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.contributor.instituteInstitutos de la UMH::Instituto Centro de Investigación Operativaes_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s13398-021-01029-zes_ES
Appears in Collections:
Artículos Estadística, Matemáticas e Informática


no-thumbnailView/Open:

 RACSAM (2021, Paper 3) (1).pdf



359,99 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???