| Título : If not distinguished, is Cp(X) even close?
 | 
| Autor : Ferrando, Juan Carlos
  Saxon, Stephen
  | 
| Editor : American Mathematical Society
 | 
| Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática
 | 
| Fecha de publicación: 2021-03
 | 
| URI : https://hdl.handle.net/11000/30588
 | 
| Resumen : Cp (X) is distinguished ⇔ the strong dual Lβ (X) is barrelled ⇔
the strong bidual M (X) = RX. So one may judge how nearly distinguished
Cp (X) is by how nearly barrelled Lβ (X) is, and also by how near the dense
subspace M (X) is to the Baire space RX. Being Baire-like, M (X) is always
fairly close to RX in that sense. But if Cp (X) is not distinguished, we show
the codimension of M (X) is uncountable, i.e., M (X) is algebraically far from
RX, andmoreover, Lβ (X) is very far from barrelled, not even primitive. Thus
we profile weak barrelledness for Lβ (X) and M (X) spaces. At the same time,
we characterize those Tychonoff spaces X for which Cp (X) is distinguished,
solving the original problem from our series of papers.
 | 
| Palabras clave/Materias: the strong dual Lβ (X)
 barrelled Lβ (X)
 | 
| Área de conocimiento : CDU:  Ciencias puras y naturales:  Matemáticas
 | 
| Tipo de documento : info:eu-repo/semantics/article
 | 
| Derechos de acceso: info:eu-repo/semantics/closedAccess
 | 
| DOI : https://doi.org/10.1090/proc/15439
 | 
| Publicado en: Proceedings of the American Mathematical Society (PROC) Volume 149, Number 6, June 2021, Pages 2583–2596
 | 
| Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
 
 |