Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30587
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFerrando, Juan Carlos-
dc.contributor.authorJerzy, Kakol-
dc.contributor.authorLeiderman, A.-
dc.contributor.authorSaxon, S. A.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-01-23T15:37:10Z-
dc.date.available2024-01-23T15:37:10Z-
dc.date.created2020-11-
dc.identifier.citationRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Volume 115, article number 27, (2021).es_ES
dc.identifier.issn1579-1505-
dc.identifier.issn1578-7303-
dc.identifier.urihttps://hdl.handle.net/11000/30587-
dc.description.abstractWe continue our initial study of Cp(X) spaces that are distinguished, equiv., are large subspaces of RX , equiv., whose strong duals Lβ(X) carry the strongest locally convex topology. Many are distinguished, many are not. All Lβ(X) spaces are, as are all metrizable Cp(X) and Ck (X) spaces. To prove a space Cp(X) is not distinguished, we typically compare the character of Lβ(X) with |X|. A certain covering for X we call a scant cover is used to find distinguished Cp(X) spaces. Two of the main results are: (i) Cp(X) is distinguished if and only if its bidual E coincides with RX , and (ii) for a Corson compact space X, the space Cp(X) is distinguished if and only if X is scattered and Eberlein compact.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent18es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDistinguished spacees_ES
dc.subjectBidual spacees_ES
dc.subjectEberlein compact spacees_ES
dc.subjectFréchet spacees_ES
dc.subjectstrongly splittable spacees_ES
dc.subjectFundamental family of bounded setses_ES
dc.subjectPoint-finite familyes_ES
dc.subjectGδ-dense subspacees_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleDistinguished Cp(X) spaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s13398-020-00967-4es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 RACSAM (2021, Paper 1) (1).pdf



341,18 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.