Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/6503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrtiz, Mario-
dc.contributor.authorIáñez, Eduardo-
dc.contributor.authorContreras Vidal, José Luis-
dc.contributor.authorAzorín Poveda, José María-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes
dc.date.accessioned2020-10-15T07:38:25Z-
dc.date.available2020-10-15T07:38:25Z-
dc.date.created2020-06-18-
dc.date.issued2020-10-15-
dc.identifier.issn1662-5218-
dc.identifier.urihttp://hdl.handle.net/11000/6503-
dc.description.abstractThe use of brain-machine interfaces in combination with robotic exoskeletons is usually based on the analysis of the changes in power that some brain rhythms experience during a motion event. However, this variation in power is frequently obtained through frequency filtering and power estimation using the Fourier analysis. This paper explores the decomposition of the brain rhythms based on the Empirical Mode Decomposition, as an alternative for the analysis of electroencephalographic (EEG) signals, due to its adaptive capability to the local oscillations of the data, showcasing it as a viable tool for future BMI algorithms based on motor related events.es
dc.description.sponsorshipby the Spanish Ministry of Science and Innovation, the Spanish State Agency of Research, and the European Union through the European Regional Development Fund in the framework of the project Walk—Controlling lower-limb exoskeletons by means of brain-machine interfaces to assist people with walking disabilities (RTI2018-096677-B-I00);-
dc.description.sponsorshipand by the Consellería de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana) and the European Social Fund in the framework of the project Desarrollo de nuevas interfaces cerebro-máquina para la rehabilitación de miembro inferior (GV/2019/009-
dc.description.sponsorshipAuthors would like to thank specially Kevin Nathan and the rest of the laboratory of JC-V for their help during the experimental trials and Atilla Kilicarslan for his help with the implementation of H∞ algorithm.-
dc.formatapplication/pdfes
dc.format.extent13es
dc.language.isoenges
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectbrain-machine interfacees
dc.subjectfrequency analysises
dc.subjectelectroencephalographyes
dc.subjectempirical mode decompositiones
dc.subjectexoskeleton, motor imageryes
dc.subject.other62 - Ingeniería. Tecnologíaes
dc.titleAnalysis of the EEG Rhythms Based on the Empirical Mode Decomposition During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Studyes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3389/fnbot.2020.00048-
dc.relation.publisherversionhttp://dx.doi.org/ 10.3389/fnbot.2020.00048-
Appears in Collections:
Artículos Ingeniería de Sistemas y Automática


Thumbnail

View/Open:
 7-fnbot-14-00048.pdf
2,29 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???