Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/5134

Nuevos paradigmas para el estudio de artefactos y mecanismos cognitivos relacionados con la marcha a partir de señales EEG


Thumbnail

View/Open:
 Tesis Costa García, Álvaro.pdf
29 MB
Adobe PDF
Share:
Title:
Nuevos paradigmas para el estudio de artefactos y mecanismos cognitivos relacionados con la marcha a partir de señales EEG
Authors:
Costa García, Álvaro
Tutor:
Azorín Poveda, José María
Iáñez Martínez, Eduardo
Department:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Issue Date:
2016-07-18
URI:
http://hdl.handle.net/11000/5134
Abstract:
En este trabajo se pretende evaluar los mecanismos cognitivos que experimenta el ser humano durante el proceso de la marcha partir de las se ˜ nales electroencefalogr ´aficas (EEG). Uno de los principales objetivos es el desarrollo de interfaces cerebro-m´aquina que permitan determinar el estado co...  Ver más
This thesis is focused on the evaluation of electroencephalographic (EEG) signals in order to improve current understanding of cognitive processes experienced by humans during ambulation. The main goal is to set the basis of brainmachine interfaces (BMIs) development that provide information about the user cognitive state during walking. This information could be used as feedback for assistive and rehabilitation technologies. Currently, recording of cortical activity during ambulation has not been widely explored. EEG potentials have a poor signal to noise ratio which makes their recording difficult during movement. It is necessary to develop protocols that asses the validity of these signals during walking. Therefore, the thesis starts with the evaluation of cortical artifacts produced by jaw clenches. This first study was used to develop a system to control a cursor and a robotic arm in a twodimensional workspace through jaw clenches. Both systems show promising results in the field of assistive technologies oriented to physically impaired people. In a second study, cortical signals were measured both during ambulation and movement-free conditions. Both conditions were compared to find unexpected behaviors during walking. After this comparison, two types of noise were found in the signals with higher influence on ambulation recordings. Results suggest that it can be the result of conductivity changes between the scalp and the electrodes during movement. The evaluation of these noises would allow the development of protocols for recording valid EEG signals during ambulation. These protocols were used to evaluate cognitive mechanisms. The mechanism evaluated is related to the level of attention paid by humans in gait process. This work evaluates the whole EEG bandwidth to find evidence of classifiable cortical information related to this phenomenon. Results show a desynchronization in the gamma band (30-90 Hz) associated to selective attention mechanisms. Performed offline classifications provide promising results that could be implemented as a real time system. This study showed promising results in detection of cognitive mechanisms during ambulation. Taken together, these findings could be applied in future brain-machine interfaces for rehabilitation. This kind of interface would provide, in real time, several parameters related to cognitive state of patients. These parameters could be used during the rehabilitation strategy to adapt therapies to patients’ mental state. This would provide patients a way to be involved with their rehabilitation.
Keywords/Subjects:
Tratamiento de señales
Neurociencias
Rehabilitación médica
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/doctoralThesis
Access rights:
info:eu-repo/semantics/openAccess
Appears in Collections:
Tesis doctorales - Ciencias e Ingenierías



Creative Commons ???jsp.display-item.text9???