Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39060

Determining Subcanopy Psidium cattleianum Invasion in Hawaiian Forests Using Imaging Spectroscopy


thumbnail_pdf
Ver/Abrir:
 remotesensing-08-00033.pdf

6,33 MB
Adobe PDF
Compartir:
Título :
Determining Subcanopy Psidium cattleianum Invasion in Hawaiian Forests Using Imaging Spectroscopy
Autor :
Barbosa, Jomar M.
Asner, Gregory P.
Martin, Roberta E.
Baldeck, Claire A.
Hughes, Flint
Johnson, Tracy
Editor :
MDPI
Departamento:
Departamentos de la UMH::Biología Aplicada
Fecha de publicación:
2016
URI :
https://hdl.handle.net/11000/39060
Resumen :
High-resolution airborne imaging spectroscopy represents a promising avenue for mapping the spread of invasive tree species through native forests, but for this technology to be useful to forest managers there are two main technical challenges that must be addressed: (1) mapping a single focal species amongst a diverse array of other tree species; and (2) detecting early outbreaks of invasive plant species that are often hidden beneath the forest canopy. To address these challenges, we investigated the performance of two single-class classification frameworks—Biased Support Vector Machine (BSVM) and Mixture Tuned Matched Filtering (MTMF)—to estimate the degree of Psidium cattleianum incidence over a range of forest vertical strata (relative canopy density). We demonstrate that both BSVM and MTMF have the ability to detect relative canopy density of a single focal plant species in a vertically stratified forest, but they differ in the degree of user input required. Our results suggest BSVM as a promising method to disentangle spectrally-mixed classifications, as this approach generates decision values from a similarity function (kernel), which optimizes complex comparisons between classes using a dynamic machine learning process.
Palabras clave/Materias:
invasive species
strawberry guava
single-class classification
mixture tuned matched filtering
biased support vector machine
Carnegie Airborne Observatory
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/rs8010033
Publicado en:
Remote Sens. 2016, 8(1), 33;
Aparece en las colecciones:
Artículos - Biología Aplicada



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.