Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39012

Deciphering gene sets annotations with ontology based visualization


no-thumbnailVer/Abrir:

 06.pdf



840,85 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Deciphering gene sets annotations with ontology based visualization
Autor :
Ayllón-Benítez, Aarón
Thébault, Patricia
Fernández-Breis, Jesualdo Tomás
Quesada-Martínez, Manuel
Mougin, Fleur
Bourqui, Romain
Editor :
Institute of Electrical and Electronics Engineers (IEEE)
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2017-07
URI :
https://hdl.handle.net/11000/39012
Resumen :
Nowadays, one of the main challenges in biology is to make use of several sources of data to improve our understanding of life. When analyzing experimental data, researchers aim at clustering genes that show a similar behavior through specific external conditions. Thus, the functional interpretation of genes is crucial and involves making use of the whole subset of terms that annotate these genes and which can be relatively large and redundant. The manual expertise to clearly decipher the main functions that may be related to the gene set is timeconsuming and becomes impracticable when the number of gene sets increases, like in the case of vaccine/drug trials. To overcome this drawback, it may be necessary to reduce the dataset with the aim to apply visualization approaches. In this paper, we propose a new pipeline combining enrichment and annotation terms simplification to produce a synthetic visualization of several gene sets simultaneously. We illustrate the efficiency of our method on a case study aiming at analyzing the immune response in diseases.
Palabras clave/Materias:
Gene sets
Genetics
Ontology based Visualization
Experimental data
Tipo de documento :
info:eu-repo/semantics/conferenceObject
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1109/iV.2017.18
Publicado en:
21st International Conference Information Visualisation (2017)
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.