Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39012
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAyllón-Benítez, Aarón-
dc.contributor.authorThébault, Patricia-
dc.contributor.authorFernández-Breis, Jesualdo Tomás-
dc.contributor.authorQuesada-Martínez, Manuel-
dc.contributor.authorMougin, Fleur-
dc.contributor.authorBourqui, Romain-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2026-01-26T11:18:35Z-
dc.date.available2026-01-26T11:18:35Z-
dc.date.created2017-07-
dc.identifier.citation21st International Conference Information Visualisation (2017)es_ES
dc.identifier.issn2375-0138-
dc.identifier.urihttps://hdl.handle.net/11000/39012-
dc.description.abstractNowadays, one of the main challenges in biology is to make use of several sources of data to improve our understanding of life. When analyzing experimental data, researchers aim at clustering genes that show a similar behavior through specific external conditions. Thus, the functional interpretation of genes is crucial and involves making use of the whole subset of terms that annotate these genes and which can be relatively large and redundant. The manual expertise to clearly decipher the main functions that may be related to the gene set is timeconsuming and becomes impracticable when the number of gene sets increases, like in the case of vaccine/drug trials. To overcome this drawback, it may be necessary to reduce the dataset with the aim to apply visualization approaches. In this paper, we propose a new pipeline combining enrichment and annotation terms simplification to produce a synthetic visualization of several gene sets simultaneously. We illustrate the efficiency of our method on a case study aiming at analyzing the immune response in diseases.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGene setses_ES
dc.subjectGeneticses_ES
dc.subjectOntology based Visualizationes_ES
dc.subjectExperimental dataes_ES
dc.titleDeciphering gene sets annotations with ontology based visualizationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherversionhttps://doi.org/10.1109/iV.2017.18es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 06.pdf



840,85 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.