Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/38615Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | España Roch, Víctor Javier | - |
| dc.contributor.author | Aparicio, Juan | - |
| dc.contributor.author | Barber i Vallés, Josep Xavier | - |
| dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
| dc.date.accessioned | 2025-12-01T09:15:02Z | - |
| dc.date.available | 2025-12-01T09:15:02Z | - |
| dc.date.created | 2025 | - |
| dc.identifier.citation | Computers and Operations Research | es_ES |
| dc.identifier.issn | 1873-765X | - |
| dc.identifier.issn | 0305-0548 | - |
| dc.identifier.uri | https://hdl.handle.net/11000/38615 | - |
| dc.description.abstract | Data Envelopment Analysis (DEA) is a widely used method for evaluating the relative efficiency of decision-making units, but it often yields overly optimistic efficiency estimates, particularly with small sample sizes. To overcome this limitation, we introduce Adaptive Constrained Enveloping Splines (ACES), a non-parametric technique based on regression splines to accommodate multi-output, multi-input production contexts. ACES employs a three-stage estimation process. In the first stage, optimal output levels are estimated while incorporating essential envelope constraints, with optional monotonicity and/or concavity adjustments as needed. In the second stage, a refinement phase is carried out in which some of the estimates made are replaced by the observed values. Finally, a DEA-type technology is constructed using a new virtual data sample, ensuring adherence to usual shape constraints. Although ACES entails a higher computational cost, it achieves substantially lower mean squared error and bias than alternative methods of the literature across a wide range of simulated scenarios. This improvement is particularly pronounced in settings with complex production structures or heterogeneous returns to scale. This performance is consistent across both noise-free and noisy data environments, underscoring the method’s robustness and accuracy. | es_ES |
| dc.format | application/pdf | es_ES |
| dc.format.extent | 21 | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.relation.ispartofseries | Vol. 184 | es_ES |
| dc.rights | info:eu-repo/semantics/openAccess | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | data envelopment analysis | es_ES |
| dc.subject | multi-output technologies | es_ES |
| dc.subject | overfitting | es_ES |
| dc.subject | machine learning | es_ES |
| dc.subject.other | CDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística | es_ES |
| dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisis | es_ES |
| dc.title | Estimating production technologies using multi-output adaptive constrained enveloping splines | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.relation.publisherversion | https://doi.org/10.1016/j.cor.2025.107242 | es_ES |

Ver/Abrir:
Estimating production technologies using multi-output adaptive.pdf
1,67 MB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.
.png)