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Data Envelopment Analysis (DEA) is a widely used method for evaluating the relative efficiency of decision-
making units, but it often yields overly optimistic efficiency estimates, particularly with small sample sizes.
To overcome this limitation, we introduce Adaptive Constrained Enveloping Splines (ACES), a non-parametric
technique based on regression splines to accommodate multi-output, multi-input production contexts. ACES
employs a three-stage estimation process. In the first stage, optimal output levels are estimated while incorpo-
rating essential envelope constraints, with optional monotonicity and/or concavity adjustments as needed. In the
second stage, a refinement phase is carried out in which some of the estimates made are replaced by the observed
values. Finally, a DEA-type technology is constructed using a new virtual data sample, ensuring adherence to
usual shape constraints. Although ACES entails a higher computational cost, it achieves substantially lower mean
squared error and bias than alternative methods of the literature across a wide range of simulated scenarios. This
improvement is particularly pronounced in settings with complex production structures or heterogeneous returns
to scale. This performance is consistent across both noise-free and noisy data environments, underscoring the

method’s robustness and accuracy.

1. Introduction

Efficiency analysis is the discipline focused on evaluating a set of
observations, commonly referred as Decision-Making Units (DMUs), in
terms of their transformation process from inputs to outputs. Under-
standing and improving efficiency is of paramount importance for or-
ganizations aiming to optimize their resource allocation and output
generation in manufacturing, healthcare, finance, or any public sector.

Non-parametric frontier methods are widely used in measuring ef-
ficiency in production theory. These methodologies allow researchers to
assess the performance of DMUs by comparing their actual output level
against a frontier that represents the best achievable output for a given
input profile. By capturing the gap between observed performance and
the estimated frontier, these methods provide a valuable insight into the
potential for improvement in areas where inefficiencies may be present.
These types of frontiers are generally estimated through Data Envelop-
ment Analysis (DEA) introduced by Charnes et al. (1978) and Banker
et al. (1984), or Free Disposal Hull (FDH) proposed by Deprins et al.
(1984). These non-parametric approaches present some benefits
regarding their parametric counterparts, such as Stochastic Frontier

* Corresponding author.
E-mail address: j.aparicio@umh.es (J. Aparicio).

https://doi.org/10.1016/j.cor.2025.107242

Analysis (SFA), introduced by Aigner et al. (1977) and Meeusen and van
Den Broeck (1977) . For example, they can estimate the frontier with
greater flexibility, as they do not require assumptions about the func-
tional form of the data, as well as they handle multi-input and multi-
output scenarios without imposing prior weights on the dimensions
considered.

Nevertheless, DEA (and FDH) has faced criticism due to its non-
statistical nature, leading some authors to label it as a merely descrip-
tive tool at a frontier level with limited inferential capabilities (Esteve
et al., 2020; Tsionas, 2022; Valero-Carreras et al., 2022; and Molinos-
Senante et al., 2023). Enveloping techniques such as DEA or FDH locate
the efficient frontier as close as possible to the data sample, relying on
the principle of minimal extrapolation. While these techniques accu-
rately measure efficiency for a specific and known set of observations,
they are prone to suffering from overfitting. In this context, Korostelev
etal. (1995) demonstrated that when applying DEA to a finite sample of
identically and independently distributed observations drawn from a
Data Generation Process (DGP), the estimated frontier exhibits a
downward bias relative to the true frontier underlying the DGP. The
overfitting problem in DEA has a direct impact on the results, leading to
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a significant portion of the evaluated DMUs being identified as techni-
cally efficient. This fact suggests that a DMU should not be regarded as
(truly) efficient even if the DEA models indicate it as such. In general,
DEA scores are particularly susceptible to overoptimism, which becomes
even more pronounced when the dimensionality of the analysis in-
creases. In fact, the curse of dimensionality is a common issue in DEA,
occurring when the ratio of DMUs to variables (inputs and outputs) is
not large enough. This phenomenon has been discussed in studies such
as Adler and Golany (2007), Wilson (2018), Charles et al. (2019) and
Chen et al. (2021).

To overcome these limitations in the non-parametric approach,
particularly in estimating technical efficiency at an inferential level
rather than a sample-specific based evaluation, several authors have
striven over the past few decades to introduce alternative methodologies
that complement (or replace) DEA. For instance, Simar and Wilson
(1998, 2000) employed bootstrapping techniques to calculate confi-
dence intervals for efficiency scores estimated through DEA. Aragon
et al. (2005) proposed a non-parametric estimator of the efficient fron-
tier based on conditional quantiles from a relevant production process
distribution. Building upon these concepts, Daouia and Simar (2007)
further expanded on this approach. Kuosmanen and Johnson (2010)
introduced the Corrected Concave Nonparametric Least Squares
(C?NLS) regression as a reinterpretation of DEA, aiming to estimate the
underlying theoretical production function that generated the observed
data sample. Parmeter and Racine (2013) proposed smooth constrained
nonparametric and semiparametric estimators for production frontiers
while satisfying theoretical axioms of production theory. Finally, Daouia
et al. (2016) presented a constrained estimation method for support
frontiers combining edge estimation and quadratic or cubic spline
smoothing techniques.

From a stochastic point of view, several authors have introduced
methods incorporating both inefficiency and statistical noise into fron-
tier estimation. An early contribution in this direction is the stochastic
DEA formulation by Banker (1988), who introduced a linear
programming-based approach to estimate a frontier that accounts
explicitly for statistical noise, positioning it within the data rather than
strictly enveloping it. This model was further extended by Banker and
Maindiratta (1992) into a semiparametric framework, incorporating
maximum likelihood estimation and specific distributional assumptions
about inefficiency and noise. More recently, Kuosmanen and Kortelai-
nen (2012) introduced the Stochastic Non-Smooth Envelopment of Data
(StoNED) method, which combines the nonparametric DEA approach
with the SFA framework, aiming to estimate production frontiers while
accounting for both inefficiency and statistical noise. Finally, Kuosma-
nen et al. (2015) and Kuosmanen and Johnson (2017) developed a
consistent nonparametric estimator of the Directional Distance Function
(DDF) introduced by Chambers et al. (1998) using StoNED.

Additionally, the DEA community is increasingly exploring the
relationship between efficiency analysis, production function estima-
tion, and machine learning, particularly to address overfitting in tradi-
tional methods by improving the estimation of the Data Generating
Process. For instance, Olesen and Ruggiero (2018) introduced weighted
random hinge functions with parameter constraints as an alternative to
Afriat-Diewert-Parkan (ADP) estimators. Esteve et al. (2020) developed
Efficiency Analysis Trees (EAT) to estimate frontiers in a FDH fashion,
using a modified version of the Classification and Regression Trees al-
gorithm (Breiman et al., 1984). Building on these ideas, Esteve et al.
(2023) and Guillen et al. (2023) further improved the robustness of the
EAT results by incorporating adaptations of the Random Forest meth-
odology (Breiman, 2001) and Gradient Tree Boosting (Friedman, 2001),
respectively. Valero-Carreras et al. (2021) adapted Support Vector
Regression (SVR), originally introduced by Drucker et al. (1997), for
production function estimation, with a natural extension for the multi-
output case presented in Valero-Carreras et al. (2022). In the same
line, Guerrero et al. (2022) further extended SVR to estimate production
frontiers, effectively mitigating the typical overfitting problem. Olesen
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and Ruggiero (2022) introduced Hinging Hyperplanes (HH) function
approximation (Breiman, 1993) as a flexible estimator of production
functions. Finally, Espana et al. (2024) adapted the additive version of
Multivariate Adaptive Regression Splines (MARS), introduced by
Friedman (1991), to standard production contexts with a single output
through piece-wise linear functions.

Our approach relies on an adaptation of the additive version of the
Multivariate Adaptive Regression Splines (MARS) algorithm by Fried-
man (1991). This technique is a powerful non-parametric method
broadly used in supervised learning. MARS approximates a target
function through an expansion of basis functions (BFs), which are
mathematical transformation of variables (i.e., step functions, poly-
nomials, splines, etc.). These BFs serve as the building blocks for
approximating complex relationships and interactions between pre-
dictors. The MARS algorithm constructs the approximation by itera-
tively adding and removing BFs, which are defined as splines —
piecewise linear functions that are connected at specific points called
knots. These splines can be univariate or multivariate, depending on
whether they involve one or multiple predictors. When MARS uses only
univariate splines, it is referred to as an additive MARS model. The
MARS technique faces the problem of optimal knot location using two
main processes: forward selection and backward elimination. The for-
ward selection creates a comprehensive set of BFs that may overfit the
training data, while (afterwards) the backward elimination sequentially
removes (unnecessary) BFs with minimal impact on the model’s per-
formance. MARS avoids the problem of data overfitting in this way.

Despite relying on different modeling strategies, the approaches by
Olesen and Ruggiero (2022), Espana et al. (2024), and our current
extension all follow a similar underlying principle: they build flexible
piecewise linear approximations through input space partitioning and
the combination of elementary BFs. However, the scope of each
approach—and the type of technologies they are best suited to estima-
te—differs substantially. On the one hand, Olesen and Ruggiero (2022)
reinterpreted Breiman’s HH formulation as a nonparametric estimator
of S-shaped production functions by assuming homotheticity. Their
method uses fixed hinge locations and separates the estimation into a
linear homogeneous core and a nonlinear scaling law, avoiding the need
for Afriat-type inequalities (Afriat, 1972; Diewert and Parkan, 1983). On
the other hand, Espana et al. (2024) proposed a constrained version of
MARS which estimates concave production functions by selecting spline
basis functions under shape constraints, through a fully data-driven
forward-backward procedure. That work is now further extended to
handle multi-output settings by constructing a DEA-type technology
from refined predictions, enabling full compatibility with standard ef-
ficiency measurement tools. In future research, a similar separation into
a linear core and nonlinear scaling law—following the structure pro-
posed by Olesen and Ruggiero—could also be explored within our
framework, potentially broadening its applicability to S-shaped
technologies.

We now present our methodological contribution, which builds upon
and extends the additive MARS approach proposed by Espana et al.
(2024). Specifically, our proposed framework provides three key
methodological advancements that address limitations of the original
method and extend its applicability to a broader set of problems.

First, we relax the conditions for satisfying monotonicity and con-
cavity assumptions. In the original approach, these constraints were
enforced additively, meaning that each univariate function within the
estimator was independently required to comply with the shape re-
strictions. In contrast, our new approach enforces these constraints
dimensionally, applying them across the (dimensional) aggregated
function rather than its individual components. This refinement elimi-
nates the need for all component functions to be individually monotonic
and concave, thereby providing greater flexibility in estimating the
model’s coefficients.

Second, we address a key limitation of the original additive frame-
work: its inability to model interactions between variables. By
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introducing the capability to account for these interactions, our
approach captures intricate, non-linear relationships present in the data,
overcoming the restrictive linear structure of the original method. This
improvement directly resolves one of the critical shortcomings identi-
fied in the earlier work, where cross-variable effects were insufficiently
represented. Together with the relaxation of monotonicity and concav-
ity constraints described earlier, this advancement considerably en-
hances the model’s ability to accurately estimate the underlying data
structure and account for the complexities of real-worlds production
processes.

Third, we expand upon the work of Espana et al. (2024) by extending
their research on production functions (i.e., only one output was
considered) to estimate multi-output, multi-input technologies. This
extension is based on a novel procedure that unfolds in three main steps.
First, we use a Machine Learning (ML) technique adapted to the context
of efficiency analysis to approximate observed outputs to the data-
generating process (DGP), ensuring that the observed sample is envel-
oped from above. Second, a refinement phase is performed, where some
of the initial estimates, particularly those deemed inaccurate, are
replaced by their observed values. Third, a DEA-VRS (Variable Returns
to Scale) technology is constructed by replacing the observed outputs
with a new vector of outputs predicted by the ML algorithm. To achieve
this, we introduce an extension of the algorithm originally proposed by
Espana et al. (2024), which we name Adaptive Constrained Enveloping
Splines (ACES) to distinguish it from its earlier version.

The paper’s structure is as follows. Section 2 provides the back-
ground. In Section 3, we introduce the new technique called Adaptive
Constrained Enveloping Splines (ACES), detailing its theoretical un-
derpinnings and how it builds on previous methodologies. Section 4
describes how some well-known measures of technical efficiency can be
implemented through ACES. Section 5 introduces the set of available
hyperparameters and conducts computational experiments using simu-
lated data to evaluate the performance of the new approach. Section 6
shows an empirical illustration. Finally, Section 7 concludes the paper.

2. Background

This section provides a brief overview of important concepts related
to Data Envelopment Analysis and the application of Multivariate
Adaptive Regression Splines for estimating production functions
(Espana et al., 2024). Additionally, we will introduce some notation.

2.1. Data envelopment analysis

Let us consider a sample of n DMUs, whose technical efficiency needs
to be evaluated. Specifically, each DMU;, i = 1,...,n, consumes x; = (xil,
<o, X, ..., Xim) € RT inputs to produce y; = (Ya, ... ¥ir, ....¥is) € RS, out-
puts. To assess the (relative) efficiency of a DMU, a common technology
set (¢), shared by all the DMUs within the sample, needs to be defined.
From a broader viewpoint, the technology can be expressed as:

¢ ={(x,y) € R : x can produce y }. (€]

This technology includes all (x,y) combinations that are technically
feasible. In the non-parametric approach, this technology is axiomati-
cally established, adhering to principles outlined by Banker et al. (1984).
Precisely, it upholds the free disposability of inputs and outputs,
meaning that if (x,y) € ¢, then (X,¥) € ¢ for xX>x and y'<y. It also
guarantees the enveloping property, ensuring that (x;,y;) € ¢, Vi = 1,...,
n. Convexity is also typically assumed, implying that if (x,y) € ¢ and
(X,¥) € 9, then Ax,y) + (1 —A)(X,¥) € ¢, VA€ [0,1]. Lastly, the
technology meets minimal extrapolation, representing the smallest set
satisfying prior axioms. This particular axiom is the cause of the over-
fitting problem by closely approximating the technology’s boundary to
the observed units (see, e.g., Esteve et al., 2020).

In the realm of Data Envelopment Analysis (DEA), Banker et al.
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(1984) proposed an estimation of the technology with variable returns
to scale as:

n n
Pea = {(x.,y) ERTT X2y Aixgj =1, My <> A,
i=1

i=1

n
_1,...,s,z/1,-_1,/1,->0,i_1,...,n}. )
i1

Regarding the measurement of technical efficiency, the DMU being
evaluated should be projected onto a certain part of the border of the
technology. This part of the technology is called the efficient frontier or
production frontier of ¢, which is defined as:

Ap) ={(xy)€p:X<xy>y=>Xy) 0} 3

In DEA, the estimation of the technology and the measurement of
technical efficiency are achieved in a single step through a linear pro-
gramming (LP) model. Typical measures for determining technical ef-
ficiency include the input-oriented and output-oriented radial measures
(Banker et al., 1984), the input-oriented and output-oriented non-radial
Russell measures (Fare and Lovell, 1978; Fare et al., 1985), the Direc-
tional Distance Function (Chambers et al., 1998) or the additive models
such as the Measure of Inefficiency Proportions (Cooper et al., 1999), the
Range Adjusted Measure (Cooper et al., 1999), the Bounded Adjusted
Measure (Cooper et al., 2011) or the Normalized Weighted Additive
Model (Lovell and Pastor, 1995).

Finally, we present a graphical example to illustrate the overfitting
problem inherent in DEA. In Fig. 1, we display a sample of DMUs for
efficiency evaluation using a DEA-VRS frontier. Simultaneously, we
observe the underlying DGP, which measures the maximum output (y)
achievable based on a given resource profile (x). It is interesting to note
that DEA yields overoptimistic efficiency scores, potentially skewing
efficiency assessments. We delve into the specific case of units A and B
within this analysis. While DMU A is considered efficient, DMU B re-
quires a slight increase in the level of the output produced, while
maintaining a constant input level to achieve efficiency.' Nevertheless,
both DMUs are significantly distant from the theoretical levels of effi-
ciency, demonstrating the fact that DEA is solely based on sample-level
assessments.

2.2. Multivariate Adaptive Regression splines for the estimation of
production functions

In this section, we briefly introduce the main notion associated with
the model by Espana et al. (2024) to estimate single-output multi-input

iopment Analysis

25 50 75 10.0

x

Fig. 1. An example of overoptimistic DEA scores.

1 Under the output-oriented radial measure approach (Banker et al., 1984).
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production contexts, that is, a production function. Estimating produc-
tion functions can be considered a shape-restricted regression problem
that focuses on unveiling the relationship between a single-output y and
a set of inputs xj, j = 1,...,m, at its extreme level. In the deterministic
setting, the data-generating system is presumed to be described by the
following expression:

¥ =f(X1, e Xm) — 0. 4)

Here, the first term f(xy, ..., X;,) represents the joint predictive rela-
tionship between the output y and the set of inputs x = (x1,...,Xm),
while the term v>0 assesses the level of technical inefficiency, with v =0
indicating technical efficiency.

Espana et al. (2024) extended the additive version of the Multivar-
iate Adaptive Regression Splines (MARS) algorithm (Friedman, 1991) by
incorporating shape constraints to approximate y under a deterministic
framework. This modified approach estimates a surface that envelops
the data from above while ensuring non-decreasing monotonicity and
concavity. The additive version of MARS is constructed through the
linear combination of a set of basis functions (BFs). The set of BFs are
created from an exhaustive search of knot locations by recursive parti-
tioning of the input space. Friedman (1991) proposes the implementa-
tion of a strategy based on selecting two-sided truncated univariate
splines of degree 1 as BFs:

B*(x) = (x; —k), = max(0,x —k)

B (x) = (k—x), = max(0,k —Xx;). )

A reflected pair consists of two BFs that share a common knot loca-
tion (k): a right-side spline that captures the relationship between the
predictor x; and the response variable to the right side of the knot, and a
left-side spline that does so to the left side of the knot. When a (sibling)
spline is removed from a reflected pair, we refer to it as an unpaired BF.
This terminology allows us to distinguish between splines that remain
part of a reflected pair and those that become unpaired during the
model-fitting process.

The MARS algorithm involves two stepwise procedures: a forward
selection and a backward elimination. In the forward selection step, the
input space is divided into subspaces by searching for knots along the
range of inputs. These knots are used to create a set of BFs through
splines, which transform the original inputs into additional data. At each
forward step, the reflected pair that minimizes the training error the
most, is added as a new term in the model. The set of BFs for creating

o e . n
minimize i1 &

ety =

subject to

m ~ _ [~ .
7o + ijlngpj {y; <xij - ij> . +7, (ij - xij> J —-& = Y Vi,
& > 0, Vi,
7}’; - 71; = 07 vjvvp € Pj7
7 > 0, VjwpeP,
-7, > 0, Yj,VpeP,

reflected pairs during the forward step is the following:
N={{(g k), (k—x), J ke {ryxy Xy} i=1m). ©)

This step continues until the desired number of BFs (univariate
splines) predefined by the user is reached or when further error reduc-
tion is not significant. The backward elimination algorithm is then
applied, sequentially removing less significant model terms. By
combining these stepwise procedures, the MARS model achieves an
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effective balance between model
performance.
The new additive MARS approximation function within the pro-

duction framework is formulated as:

Foo =0+ iz[y,;(xj—%pl

j=1 pep;

m
o (5-x) 4w (7 -0) | @
+ =1 vey; +

J

complexity and predictive

where x; is the j—th input, j = 1,...,m, 7o is the intercept term, yjt and Y
are the coefficients associated with the p—th reflected pair for the j—th
input and kj, € {xyj, Xy, ..., Xy } is the knot location that defines the p—th
reflected pair for the j—th input. Furthermore, P = {P; }J";l is a set of m
elements, where P; is the subset of indexes that enumerate the reflected
pairs built through the j—th input. Then, yj*, yj and%j,j =1,...,m, are the
j—th subset of ¥y, y~ and &, respectively. While the first two subsets hold
the coefficients, the latter subset is made up of the knot locations in the
input space for the reflected pairs. In the same way, we can define V, »

and ¥ for the left-side unpaired BFs. Finally, we define the set of

selected BFs as B = {l, <xj —%jp> , (3?]‘, —xj> , <’EJ(L) —xj) },j =1,
- + +

...,m, Vp € P;, ¥v € V;. Notice that during the forward algorithm, all the
BF are paired, resulting in V = @.

The algorithm starts by incorporating the constant function B; (x) =
1 (79) into the model to establish the initial region over the entire
domain. Next, a new reflected pair from (6) is selected to be incorpo-
rated into the model as:

Fo) =m0 t7 (xj - %,) e (%, - xj) . ®)
+ +

The fitting process involves generating a model for each possible
(and available) combination of variable x; and knot location ?j‘P K = X
j +:

(an observed value), where {Pj| denotes the cardinality of P;. This pro-
cedure is computationally expensive, as nearly n-m models are fitted in
each iteration.” From each of those models, a set of coefficients is esti-
mated via the following LP model:

€©)

In model (9), ¢; measures the error term defined by constraint (9.1).
Note that this variable must be restricted to be positive to envelop the

2 Friedman (1991) and Zhang (1994) introduced methods to preserve spacing
between successive knots, aiming to reduce overfitting while also lowering
computational cost by limiting the number of fitted models.
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observed data, as indicated by constraint (9.2). Constraint (9.3) ensures
concavity, while constraints (9.4) and (9.5) guarantee the non-
decreasing monotonicity of the estimator. Then, the reflected pair
from (6) that yields the greatest reduction in a certain lack-of-fit (LOF)
criterion when solving (9), is introduced in the model. Typically, the
mean residual sum of squares is chosen as a LOF measure:

n
LOF =13y~ Flx) ) 10)

i=1

In this way, equation (8) expands iteratively until a stopping crite-

rion holds: first, when the maximum number of BFs (1) has been
reached, and second, when the reduction in training error becomes
insignificant, as determined by a user-defined ratio (¢) . Like DEA, the
model associated with the forward step still exhibits overfitting. At this
stage, the accuracy is relatively high due to the close approximation to
the data sample by the piece-wise linear estimator, resulting in low bias.
However, this estimator relies heavily on the training data, leading to
high variance and makes the achievement of a good generalization
performance somewhat challenging. To tackle this issue, a backward
algorithm based on the generalized cross-validation (GCV) metric,
initially proposed by Golub et al. (1979), is employed:

GCV(B) = o (in
|:1 _ C(B)+d-)(:|

n

In this context, C(B) represents the number of parameters to be

estimated in fB, where fB is a model built from a specific set of BFs (B).
The hyperparameter d penalizes model complexity. Finally, y is the
number of additional BF parameters being fit to the data in ]A‘B. In the
new ACES algorithm, y represents the number of knots being placed to
establish the set of BFs. It should be noted that removing a BF from a
reflected pair reduces C(B) by one unit since there is one less parameter
to be fitted, but it does not affect y.

The backward algorithm shown in Espana et al. (2024) follows the
procedure outlined in Friedman (1991). The key difference between
both approaches lies in the selection procedure for removing a BF. In
contrast to standard (additive) MARS, where any BF is candidate for
elimination, the approached described in Espana et al. (2024) introduces
two conditions that must be considered before selecting a BF for
removal:

1. Right-side BFs can only be removed from reflected pairs.
2. Left-side BFs can only be removed when appearing unpaired.

Then, the LP model to be solved at each stage of the backward al-
gorithm is as follows:

Y] n
minimize . l&‘i

etgyty.@ =

subject to

~(L)

m + —~ _f~ m
0t 3T () (B ) | (3 x) e

&
_yt T
Ty =1,

J’j‘

'p

_ },JT

P

—wj,
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Model (12) introduces only one additional constraint, (12.6),
compared to the forward model (9), ensuring that the unpaired BFs on
the left side also adheres to monotonicity and concavity properties.
Hence, the backward algorithm creates a set of |B| —1 sub-models by
removing BFs one by one and selects the model that minimizes (11).

3. Adaptive Constrained Enveloping splines

This section details the enhancements made to the additive MARS
model introduced by Espana et al. (2024). First, we outline the modi-
fications implemented to improve the model fit, including (i) the
introduction of a relaxed optimization problem for coefficient estima-
tion and (ii) the incorporation of variable interactions in the modeling
process. Second, we describe how the model has been adapted for esti-
mating production frontiers, which involve the analysis of multi-output
multi-input production contexts.

3.1. A new and more relaxed approach

The additive MARS model adapted to the estimation of production
functions presented in Espana et al. (2024) is based on the idea that the
sum of non-decreasing monotonic and concave functions results in a
function that is both non-decreasing monotonic and concave. Specif-
ically, each reflected pair and unpaired left-side BF in (7) are forced to be
non-decreasing monotonic and concave. However, it is worth noting
that these constraints may be overly stringent.

We propose the following reformulation of (7), where the additive
MARS model is expressed as a sum of (paired and unpaired) right-side
and left-side BFs:

~ACES U u
A RSN INCEL SN ES M ILACELIN
=1 hen; + =1 uey; +
13
Here, x; is the j—th input,j =1,...,m, 7, is the intercept term, q;, is the
coefficient associated with the h—th right-side BF for the j—th input and
Kj(f) € {xyj, Xy, ..., Xy } is the knot location that defines the h—th right-side
BF for the j—th input. In addition to that, H = {H; }J";l is a set of m ele-
ments, where H; is the subset of indexes that enumerate the right-side
BFs built through the j—th input. The standard format for BF enumera-
tion is to list the paired BFs first, followed by the unpaired BFs (first

right, then left). Besides, o; and K;R), j =1,...,m, are the j—th subset of a

and x®, respectively. In the same way, we can define U, $ and ) for the
left-side BFs. Within each type of BF, the order of enumeration is
determined by the value of the knot location, from lowest to highest.

Finally, remember that <x] - K;P) and (K;L) - xj) form a reflected
+ “ +

pair if 3h € H;, u € U; such that K;f) = KJ(:) In particular, during the

= Y vi, (12.1)
> 0, vi, (12.2) 12
> 0, VjvpeP, (123)
> 0, VjivpeP, (124)
> 0, VjvpeP, (125)
> 0, Vi,weV,. (126)
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forward algorithm, only reflected pairs are formed implying that K;f) =
«, h =uvh € Hj, Yu € U;.

Next, the set of knots selected by the left-side BFs for the j—th input is
(L), Vu € Uj. Besides, the set of

selected knots associated with the rlght side BFs for the j—th input is
determined, excluding the knots already used by the left-side BFs, as

R)* _ (R)\ ((R) ~ (L) (R)
G =K \<K] Nk; ) such that «;,
knots is necessary to avoid repeated values when the BFs form a re-

flected pair. Thus, the set of knots selected at any step of the algorithm is
established as follows:

U f>} = {Ky, .. Kn}

- {{kh, ok } {klm, . } },kjl <<k

As an additional step, each set K; is expanded by including both the
minimum and maximum observed values of the variable x;, with the

specified as K;L)* = KJ ) such that K

(R), Vh € H;. This omission of

K= {KJ—:K;R)

(14

goal of creating a collection of intervals [k; ,,k;,), t = 1,...|K| + 1:
- m
K = {kfo UK; U kf‘K]_|}l }ﬁ kJo - {Bllgl(xl}) kj|'<i|” - {I}lagf(xl]) 1s)

Under this new approach, our objective is to guarantee non-
decreasing monotonicity and concavity within each interval [k;_,,k;,) .
To achieve this, we use the closed-form expression of the first-order
partial derivatives determined from expression (13) to establish esti-
mation conditions on the coefficients that satisfy the shape requirements
of the estimator. The idea is to gather all BFs that involve identical in-
puts, as expressed below:

AACES(X) - Xm: f;\CEs(x)
j=1
A M PICICRESREDWIACEON

(16)

~ACES
Hence, the j—th first-order partial derivative of f
a piece-wise function:

(x) is defined as

AACES
0
P S (> ) - a0 <), a7
heH; uey;
minimize !
z e
£.70.0.8 i:1¢i !
subject to
m (R)
To + j:thEHj {afh (xij K ) ] + ZJ 1ZueU, { Ju( K, —Xi )+] —&
&

(L) ¢
ZheH (k}OSK < k]t) ZueUﬁlu < g <K, < J‘Kj‘+1 )
(L)
7Zhel~1jaj’1.1 ]z+1 ) + ZHEUﬂ}“ ( Ge1 < Kj, Skjt)

(ke <

where I(.) is an indicator function that takes the value of 1 when its
condition is met and O otherwise. These indicator functions determine
the regions in the input space where a BF associated with some coeffi-

cient a;, or f; is activated. Specifically, (xj - K;f) ) is activated in all
+

\%

\%

\%
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intervals to the right-side of the knot x! Jh ), while ( h_ Xj ) is activated
+

(L)

in all intervals to the left-side of the knot K, In view of this, we can

~ACES
define the j—th partial derivative of f ~ (x) for the t—th interval [kj,_,,

k) as:
/\ACES
6f (x)

< k]l ) - Zﬁju'I(kj[—l < K;f)gkj‘KjIH )’t

uey;

Zaf’l (kjo gKJ}.

¢ heH

L K| +1.

18

From this point onwards, we proceed to define the conditions
required for ensuring both non-decreasing monotonicity and concavity
properties of our estimator. Non-decreasing monotonicity is achieved by
imposing that the estimated function increases in each interval

kit K ¢

~ACES

F oot me =1, |K 41, (a9
ax]'

t

while concavity is guaranteed by imposing that the rate of growth de-
creases between two consecutive intervals ([k;_,.k;) , [k;,,kj.,) ):

oF %)

0x G

/a}_\ACES (x)

0x;

SIK 41, (20)

t t+1

which is equivalent to:

L)
- Zajh I (kir SK;,, h+1 ) + Zﬁ]u ( -1 K]<u

heH; uel;
=1,..,|K]
(21)

With this approach, the shape constraints are satisfied for each

dimension individually, meaning that each f?CES(x) in (16) is a non-
decreasing monotonic and concave function. This contrasts with the
methodology introduced by Espana et al. (2024) where each reflected
pair or left-side unpaired BF in (7) had to meet shape constraints. Then,
the LP model for estimating the set of coefficients under this new

approach is as follows:

Yi, Vi, (22.1)
(22)
0, Vi, (22.2)
0, Vj,t=1,.,|K|+1, (22.3)
0, Vt=1,.,]K (224

In model (22), ¢% is included to weigh errors, where ¢; is the score of
the i—th DMU obtained by the radial model under output orientation
(Banker et al., 1984). This gives higher importance to errors near the
frontier. Moreover, the relaxation of the problem also has an impact on
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Fig. 2. Example of the partitioning of the input space for an ACES model.

the backward algorithm. Unlike the approach by Espana et al. (2024),
which requires a careful selection of candidate BFs for removal at each
iteration, the current approach allows any BF to be considered for
elimination as long as (22) remains feasible.

Next, we provide an example to illustrate the aforementioned con-
cepts using the following ACES model:

~ACES
() =5.44a,-(0 —9.27), +,,-(9.27 = x1), +an,-(x1 — 6.14),

+p,(283 - x1),,
23)

where a1, = 0.134, ;= —0.192, a;, = —0.055 and 5, = —0.417.
Fig. 2 represents the partition of the input space into a collection of
disjoint intervals derived from the ACES model defined in (23). The
selected intervals arise naturally from the knot locations, which are
determined by the optimization process in the ACES model. These knots
are introduced where the data shows significant shifts in behavior,
allowing the model to capture local variations and minimize error
within each subregion. Specifically, the following intervals can be
defined: [1.01,2.83), [2.83, 6.14), [6.14, 9.27) and [9.27,9.98). More-

~ACES

over, 7

= is formulated as the sum of the coefficients activated in

t

each interval: 0.609 in x; € [1.01,2.83), 0.192 in x; € [2.83,6.14),
0.137 in x; € [6.14,9.27) and 0.079 in x; € [9.27,9.98). It can be
observed that the first derivative takes a positive value in each interval
and decreases as we move dimensionally to the right intervals. Finally,
in terms of expression (15), the set of selected knots (including the
minimum and the maximum data
{1.01, 2.83,6.14, 9.27, 9.98}.

s

value) is K =

3.2. A model with interaction of variables

The prior version of ACES (Section 3.1) is a purely additive model,
which may limit its performance when dealing with production func-
tions involving interactions among input variables. Although its additive
nature could initially be seen as a limitation, Espana et al. (2024)

demonstrated through simulations from Kuosmanen and Johnson
(2010) that the new method can outperform DEA and C2NLS even in
non-additive cases. However, the success of this approach depends on
the predominance of variable interactions and the extent of non-
additivity in the true production function. Specifically, Espana et al.
(2024) highlight a threshold around 0.5 as the maximum interaction
between variable for which the technique proposed continues to provide
good results. Beyond this threshold, performance declines sharply,
regardless of the sample size.

The standard MARS approach incorporates multivariate BFs of g—th
degree. These high-order degree BFs are formed by taking the product of
a new 1-degree (univariate) spline as in (5) and a previously entered
(univariate or multivariate) BF. Some considerations must be made.
Firstly, each factor in the multivariate BF must involve a different pre-
dictor variable to avoid high-power dependencies sensitive to extreme
values. Secondly, a hierarchical structure prevails, as a g—th degree BF
cannot be introduced in the model until a (¢ —1)—th degree BF is
included. Lastly, these BFs act locally within the region of the input
space where all the splines that comprise the multivariate BF are acti-
vated. As an example, consider the following 3-degree BF
(x1 —5) -(x3 —9)_ (7 —x2),. This BF incorporates interactions be-
tween three predictor variables. The terms (x; —5),, (x3 —9), and
(7 —x2), are the univariate splines associated with each predictor
variable, and their product builds the multivariate BFs. Unfortunately,
the product of a non-decreasing monotonic and concave function is not
necessarily a non-decreasing monotonic and concave function. Then, as
far as we are concerned, this strategy cannot be applied in our context
due to the inability to impose the required shape constraints in these
types of surfaces. In this regard, Shih et al. (2006) and Martinez et al.
(2015) introduced two alternative convex (but non-monotonic) versions
of MARS that allowed convex multivariate BFs.

To overcome the aforementioned limitations, we propose a simple
yet effective procedure for incorporating variable interactions. We
introduce a new hyperparameter, denoted as qmax, that determines the
maximum number of inputs that can interact to create a BF. Then, let
M={1,..,m} be the set of available inputs, and let S =
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{MCM:2<|M|ggsm}, Sg€S,g =1,...J,J =Y Iuce = (31) +..

.+ <;111> be the set of all possible interactions between the original

inputs with a maximum degree gmax. In this way, we can define J new
additional variables as:

7= |[x.6=1,...J (24)
JESg
Then, let xi, ..., X;, be the set of original input in R™ and let 2, ..., 2; be
the set of interaction variables in R’ we can define the following trans-
formation 9 : R"—R™ on the form:

901, oy Xm) = (X1, ey Ximy 21,5 -, 21, (25)

where each z; is defined as the product of a subset of the original input
variables x;j, with the subset containing at most gmayx variables.

The introduction of this new set of artificial variables enables the
modeling of interaction between variables while imposing necessary
shape constraints, since these new variables are treated like the original
inputs. Similar to the original MARS approach, interactions involving a
variable with itself are avoided. On the other hand, these BFs will act
locally but as a univariate BF, i.e., it will be activated on one side of the
knot and deactivated on the other side. Additionally, while the hierar-
chical sense of interaction is not incorporated in exactly the same way as
Friedman’s method, the ACES algorithm does prioritize the inclusion of
1-degree BFs over higher degree BFs, following the approach shown in
Tsai and Chen (2005). In this regard, we introduce a new hyper-
parameter &9, q = 2, ..., @max, Which determines the minimum per-
centage of improvement with respect to the best 1-degree BF required
for the incorporation of a g—degree BF into the model. This ensures that
only significantly beneficial higher-degree BFs are incorporated into the
model.

Based on the outlined procedure, the dimension of the input space
increases from m to m + J. Shape constraints are imposed in the new
space of inputs, and, in consequence, the properties of non-decreasing
monotonicity and concavity may not necessarily hold in the original
space. Therefore, in a final step, a standard DEA-VRS technology is
constructed using the new predicted output vector and the originally
observed input vectors. In this way, the estimated frontier integrates
information about variable interactions in the prediction of the optimal
output, while satisfying all the original axioms in the m dimensional
space.

3.3. A procedure for estimating a DEA-type technology using Adaptive
Constrained Enveloping splines

In this section, we extend the previously described methodology,
which estimates production functions under shape constraints like
concavity and monotonicity, to accommodate a multi-output production
framework. This extension defines an estimator for the production
technology using a piecewise linear frontier, offering an alternative to
traditional DEA in scenarios with multiple inputs and outputs, which are
very usual in practice.

Consider a set of n DMUs, where each unit i is characterized by an
observed input-output pair (x;,y;) randomly drawn from a true popu-
lation. Our approach aims to identify optimal input-output combina-
tions (x;,y;), i = 1,...,n, which define the true efficient frontier within
the production space. This is carried out in a 3-stage procedure.

In the first stage, the objective is to estimate the optimal outputs (y;)
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by determining approximations (¥;) that better reflect the true pro-
duction capabilities of each DMU. This stage operates under the
assumption that the observed inputs are optimal, i.e., x; = x;, indicating
that there is no inefficiency or random error in input measurements. This
step generates a new dataset { (x;,¥;) }| ,, representing a projection of
the observed data close to the true efficient frontier and better align with
the underlying production process.

In the second stage of the method, we address potential over-
estimations in the predicted output values. Specifically, if any compo-
nent of the estimated output vector is suspected to be overestimated, i.e.,
¥i > yU for some j, it can be corrected by replacing y; with the corre-
sponding observed value y;. This conservative approach is proposed
because is sufficient to project a few units to the true frontier to achieve
a good characterization of the technology. Additionally, any estimate
that falls between the observed value y; and the true (but unknown)
optimal value yfj improve the DEA’s performance under no random
error. However, an overestimation of y; beyond )’ij‘ could degrade the
accuracy of the method. Therefore, correcting overestimations by
retaining the observed values maintain the reliability of the resulting
technology.

As a final step in the methodology, we construct a standard DEA-VRS
technology using the refined version of {(x],¥;) }/_,. This stage offers
two significant advantages. First, it provides the flexibility to relax
monotonicity and concavity constraints during the initial stage if
needed. It is important to note that the first step is primarily focused on
adjusting the observed data to better align with the true underlying
production technology, rather than directly estimating it. By initially
relaxing these constraints, the model can capture data complexities
more effectively in some scenarios, while in others, maintaining the
constraints may yield more accurate results. However, even if all the
form constraints were imposed in the first stage, the correction phase
could break with the proper form of the technology. For these reasons,
constraints are rigorously re-imposed in the final step when constructing
the DEA-VRS technology, ensuring that the final estimated technology
satisfies all necessary shape restrictions. Thus, the first two stages
effectively “pushes” the observed data toward the true DGP ensuring
¥i<Yi, Vi = 1, ..., n, with the full enforcement of form constraints
occurring in this last step. Finally, the second advantage lies in that,
resorting to the DEA-VRS technology, it is easy to measure technical
inefficiency through any measure previously established within the
standard DEA framework (see Section 4).

We begin by adapting the iterative procedure from the original
single-output to a multi-output context. While the formal application of
MARS for estimating multiple response variables is limited, Milborrow
(2014) describes a method for handling multiple outputs within a
standard MARS model, which is implemented in the R earth package
(Milborrow, 2023). In this approach, while the same set of BFs is applied
across all models, the coefficients differ for each response variable. Next,
during the backward algorithm, the usual procedure is followed, but
with the minimization of the overall GCV score across all response
variables.

The first two phases of this method are detailed below, while the
final phase is discussed in Section 4. To extend model (22) to the multi-
output context, we need to consider all outputs simultaneously. This
optimization imposes shape constraints like concavity and monotonicity
while minimizing deviations from observed data. The result is a piece-
wise linear frontier that accurately captures the underlying production
technology. The following LP model is used to produce an estimator that
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Table 1

Illustrative example of the performance of our methodology for four selected units.
Index x1 x2 » y2 ¥ Ya b2 Y2 o @ b
4 39.96 15.47 161.77 459.22 189.98 539.29 600.71 572.42 3.59 1.03 1.03
22 32.34 40.57 667.48 811.30 675.93 821.57 765.65 880.22 1.15 1.00 1.00
23 38.30 14.85 446.22 190.38 563.14 240.27 558.46 529.54 1.22 2.36 1.22
49 17.41 12.26 143.98 173.14 233.85 281.22 255.62 222.19 1.97 1.72 1.42

preserves the essential properties of production technologies while
mitigating overfitting:

minimize Z Z
r=1

e f’) an g = 1¢

subject to

(r) m (r) (R)
To Zj:lzhel-lj {ajh (Xif Ky ) ] + Z] IZueU { Ju ( K _XU) ] — &

Eir

(L
S i <) =5, A (b <)
)
_ZheH(x I(thﬁK Jul ) + ZUEU (T ( Je-1 < K <k}r>

The following discussion addresses key aspects of model (26). The
shape constraints — monotonicity and concavity — are efficiently
managed through constraints (26.3) and (26.4). While the grid of knots
in the input space is shared across all outputs, the coefficients are esti-
mated separately for each output. Alternatively, it is possible to estimate
each output individually by applying model (22) independently,
focusing on a dataset comprising all inputs and a single output. How-
ever, this separate estimation approach would imply not being able to
determine a common set of knots as well as an increased computational
burden on the process.

To continue, we define the estimation of the r—th output using the
following expression:

~ACES™") “
P =+ Y[ (o) ]+ XA ), ]
=1 hel 1 uey, *
(27)
. . ~ACES
where, using our vector notation, we have f @ (x) =
~ACES®) ~ACES®) L. .
( (%), .0, f (x)). It is important to note that constraints

(28.3) and (28.4) guarantee monotonicity and concavity for each
(r)

~ACES
function f (x), r =1, ...;s. This implies that applying or omitting

these constraints will result in each fACES (x) being non-decreasing,
concave, both, or neither, thereby effectively enveloping the observed
data by constraints (28.1) and (28.2). Additionally, this approach is
flexible enough to allow different shape constraints to be applied to each
output r.

Model (26) is separable, meaning that given a common set of BFs, the
coefficients @ and f for each output are estimated independently.
Consequently, the overall error is minimized by addressing each out-
put’s error separately. However, this separability can lead to certain
issues. To illustrate this situation, consider a dataset of 50 DMUs, each
characterized by two inputs (x1,x2) and two outputs (y1,y2), generated

according to the methodology outlined by Perelman and Santin (2009)
that meets usual microeconomic postulates. Additionally, the maximum

Yirs Vr, Vi, (26.1)
(26)

> 0, vr, Vi, (26.2)

> 0, vrvjt=1,.|K|+1, (26.3)

> 0 v, t=1,., K. (26.4)

output producible for a given set of inputs is denoted as (y;,y; ). Data are
generated without random error. Subsequently, we estimate these
optimal outputs, yielding (¥1,¥2). To further evaluate the method, three
additional columns are included in the table below, representing the
output-oriented radial score calculated by standard DEA, as defined by
Banker et al. (1984). Specifically, ¢ is the output-oriented radial score
utilizing all inputs and only the r—th output, while ¢ is the output-
oriented radial score utilizing all the available variables. The
following table presents data for four representative units, highlighting
the performance of our approach:

Table 1 revels that for the resource levels of x; = 39.96 and x, =
15.47, unit 4 needs to produce y; = 189.98 and y, = 539.29 to achieve
technical efficiency. Similarly, unit 23, with resources x; = 38.30 and
X2 = 14.85, should aim to produce y; = 563.14 and y, = 240.27. In
these cases, production should be mainly concentrated in y, or yi,
respectively. Conversely, for resource levels presented in units 22 and
49, the optimal production levels are similar for both outputs. Addi-
tionally, we can evaluate each unit’s relative position with respect to
single-output and multi-output analyses by using the scores V), $?) and
¢. For example, units 22 and 49 have similar positions relative to the
frontier in both single-output and multi-output contexts. However, unit
4 is significantly farther from the frontier when only output y; is
considered compared to when both outputs are accounted for. A similar
situation occurs for output y» and unit 23. The ACES model estimates
(¥1,y2) were generated using model (26), incorporating monotonicity
(26.3) and concavity (26.4) constraints. The results show that prediction
for both outputs are similar across all four units, exhibiting poor per-
formance in estimating y; for unit 4 and y, for unit 23. Precisely, these
units exhibit greater discrepancies when comparing single-output and
multi-output analyses. This situation underscores the importance of the
refinement step, where replacing the predicted values with observed
values could significantly enhance the technique’s performance.

When applying an ACES model in a multi-output context, the
model’s accuracy is highly dependent on its ability to predict each
output variable effectively. Poor predictions, even for a single output,
can significantly distort the overall efficiency assessment of DMUs. In
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contrast, projecting only a few units onto the frontier can achieve a good
characterization of the technology. Adopting an approach where only a
portion of the observed output is substituted, while preserving the
remainder, has proven beneficial in improving the model performance,
as we will show. As illustrated in Table 1, the ACES model performs well
when the DMU’s relative position remains consistent across both single-
output and multi-output analyses, thereby accurately capturing the
DMU’s maximum production capacity. Considering these factors, and to
mitigate the negative effects of inaccurate predictions, we implement
the following strategy to refine the ACES estimates:

~ACES"

yi,_{f ) [0 =#l<p i1 mre1s 28)

Yirs }(b(r) - ¢ |>p

where ¢ is the DEA-based output-oriented radial score utilizing all

inputs and only the r—th output, ¢ is the DEA-based output-oriented
~ACES"
radial score utilizing all the available variables, f (x;) is the r—th

output prediction for the i—th DMU by an ACES model, and p is a

(r)

threshold that prioritizes either predicted output fACES (x) or observed
output y; to constitute {(x;,¥:) }1'":1' Following our experience, a
threshold value of p = 0.05 generally performs well across different
scenarios, while a value of p = 0 corresponds to the standard DEA
technology. Notably, in the case of considering a single output all
observed units are replaced by the predicted units.

Finally, we can define the ACES technology as follows:

n n
Paces = {(X,)’) ERT" 1 x> Zlixij,f =1, ---,m,y&zﬂiyinr
i =1

—1,...,s,§jzi—1,zi>0,i—1,...,n}. (29)

i=1

Several aspects merit consideration when comparing this new DEA-
type technology with the well-established DEA-VRS technology (@pra)
defined in (2). In the standard DEA framework, technology construction
hinges on historical data, where the observed input and output quanti-
ties for all DMUs form the “core” dataset. This data is then used to
incorporate new virtual productions into the technology set, guided by
assumptions like convexity, free disposability, and minimal extrapola-
tion. Traditional DEA addresses the question of ‘What other
input-output combinations can be guaranteed as producible based on
the observed units?’ assuming that some efficient DMUs are always
observed. However, the ACES framework shifts away from this
assumption. Here, the observation of truly efficient DMUs is no longer
assumed. Instead, the aim is to establish a (more realistic) technology by
including input-output combinations that are better than those
observed. This is done by varying the primary dataset composition. In
this scenario, the primary data is no longer just the observed units but
includes a virtual sample generated by the ACES model. This new
sample contains the m original input vectors, as well as a set of r (new)
“pushed-up” output vectors.

Convexity and free disposability of inputs and outputs in (29) are
easily verified. It can also be proved that @pga C @acgs. The minimal
extrapolation assumption is not imposed; instead, our approach posi-
tions the frontier as closely as possible to the new virtual data sample. In
this way, the issue of overfitting can be addressed.

4. Measuring technical efficiency through Adaptive Constrained
Enveloping splines

Expression (29) defines a technology under variable returns to scale

10
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that is separated from the observed data set by eliminating the minimum
extrapolation axiom. Next, we show how to measure the efficiency of a
DMU with input-output bundle (xo,Yy,) using @aces depending on the
type of measure considered (see, for example, Pastor et al., 2012).

The output-oriented radial measure (Banker et al., 1984):

maxd}amze 17/
subject to
n .
Z’i:l/lixij < Xo, V), 30)
Zizlli)’ir z ¢yor, VI,
’.1 jvi = 1:
i=1
Ai > 0, Vi
The input-oriented radial measure (Banker et al., 1984):
minimize [
0.4
subject to
n .
Zizllixij < Oxgp, V), @1
L AYe 2 Yo, VI
r.l jvi = 17
i=1
Ai > 0, Vi
The Directional Distance Function (Chambers et al., 1998):
maximize 13
5
subject to
n .
Z:.l:llixij < Xxo —08Gy, V), 32)
izlli?ir = Yor + 060Gy, Vr,
r,l ﬂi = 17
i=1
Ai = 0, Vi.

Here (G, Gy) = (Gy,,..-,Gx,,Gy,, .., Gy,) represents a directional
projection vector to the frontier, where (xo,¥,) + 6(Gx, Gy), with 520,
intersects the frontier.

Additionally, other well-known efficiency measures can be deter-
mined in a similar manner. Additive models such as the Measure of In-
efficiency Proportions (Cooper et al., 1999), the Normalized Weighted
Additive Model (Lovell and Pastor, 1995), the Range Adjusted Measure
(Cooper et al., 1999), and the Bounded Adjusted Measure (Cooper et al.,
2011) can be applied. Likewise, input- and output-oriented non-radial
Russell measures (Fare and Lovell, 1978; Fare et al., 1985) and the
Enhanced Russell Graph Measure (Pastor et al., 1999) are also
compatible with this approach, among others.

5. Computational experiments and hyperparameter tuning

This section is divided into three subsections. The first introduces
two distinct sets of computational experiments, based on the frame-
works proposed by Perelman and Santin (2009) and Fare et al. (1994),
respectively. Each experimental scenario is defined by three key pa-
rameters: the sample size, the number of truly efficient units located on
the underlying production frontier, and the presence or absence of
random noise. In scenarios with noise, some observations may lie above
the true frontier. These experiments are designed to evaluate the per-
formance of the proposed ACES methodology in comparison with
several well-established techniques in the field, including DEA by
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Banker et al. (1984), StoNED by Kuosmanen and Johnson (2017), the performance.

convexified version of EAT (CEAT) by Esteve et al. (2020), and Bootstrap Finally, we present the computational resources used for the esti-
DEA (BDEA) by Simar and Wilson (1998, 2000). mations. Specifically, ACES and DEA evaluations were performed on the
Both experimental designs involve estimating the true radial output Dantzig Cluster at Miguel Hernandez University (UMH), using a Su-

score (¢). To this end, we employ the available data to estimate ¢ using permicro SYS-120GQ-TNRT node equipped with two Intel® Xeon®
different techniques, denoted as aACES’ EDEA, 355“’1"5’3’ (ECEAT and (IA&BDEA. Silver' 4316 ‘CPUs at 2.30 GHz, providing 80 cores and 766? GB of RA'M.

The simulations were executed under Rocky Linux 8.7, using R version
DEA 4.2.3. The complete ACES implementation is publicly available at https
paper, with model (29) used as the final step. The ¢ score is ://github.com/Victor-Espana/aces. Optimization problems were solved
computed following the standard procedure described in Banker et al. using the Rglpk package (Theussl and Hornik, 2019). StoNED estima-
(1984). The asmNED score is derived using the StoNED method tions wer'e carried out in Python using th'e pystoned library (Dai et al.,
2021), with models solved locally by using the default MOSEK solver
(Mosek, 2021) .

The aACES score is obtained using the methodology outlined in this

(Kuosmanen and Johnson, 2017), implemented via the Python package
PyStoNED as described by Dai et al. (2021). Specifically, to perform

StoNED, we use the directional projection vector to the frontier (Gy, 51 E . ;
s 1. erimental se
Gy) =(0,0,0y,,0y,), where 6, and oy, denote the standard deviation of P wp

i K h 2017). . . . .
outputsy; andy,, respectively (see Kuosmanen and Johnson, 2017). The This section presents two complementary experimental designs,

&CEAT score is calculated using the convexified version of EAT (Esteve inspired by the methodologies outlined in Perelman and Santin (2009)

et al. 2020), which replaced the original stepwise frontier with a and Fare et al. (1994) , which serve as the basis for evaluating the

piecewise lineal production function. To implement this, we rely on the performance of the proposed approach.

eat R package (Esteve et al. 2022), using its default configuration of five

units per terminal node to prevent excessive splitting. Finally, the qASBDEA 5.1.1. Perelman and Santin (2009)

score is obtained by applying the Bootstrap DEA method (Simar and In the first design, following Perelman and Santin (2009), we simu-

Wilson, 1998, 2000) using the Benchmarking R package (Bogetoft et al., late datasets with two inputs and two outputs that satisfy standard mi-

2015) under variable returns to scale and 1,000 bootstrap replications. croeconomic postulates. Input variables are randomly drawn from a
The second subsection introduces the set of hyperparameters avail- uniform distribution U(5,50), while the outputs in the production

able to configure the ACES methodology. It specifies the values adopted frontier are generated through the following formula:

2
-In(y;) = -1+05In <j%> +0.25-In (j%) —1.5In(x;) — 0.6:In(xz) + 0.2:In(x;)* 4 0.05-In(x;)?

—0.1-In(x; )-In(x2) + 0.05-In(x; )-In (f%) —0.05:In(x,)-In (%) (33)

1 1

“InG) = -nyi) - in(22),

1

for each hyperparameter under the two experimental designs described
previously. In addition, it provides a detailed procedure for configuring

ACES in general, offering practical guidance on how to tune the method normal distribution u ~ |N(0,/0.3) | was used. Random noise was

for any given application scenario. incorporated through normal distributions vy, v, ~ N(0,+/0.01).

The third subsection presents the results obtained from the simula- . e e
. .. . . . Consequently, observed outputs, which reflect technical inefficiency,
tions. For each combination of scenario, 100 independent trials were
are calculated as follows:

conducted to evaluate the relative performance of the methods. Three
evaluation criteria are considered: Mean Squared Error (MSE), bias, and
computational time. The MSE captures the average magnitude of the
estimation error by measuring the squared differences between the
estimated and true radial output scores. Bias quantifies the average di- Y2 =Y
rection of the error, indicating whether a method systematically over-
estimates or underestimates the true frontier. Computational time, in
turn, provides a practical assessment of the algorithm’s efficiency,

where In <§%> ~ U(—1.5,1.5). To introduce the inefficiency term, a half

L1
N :yl'e—u»
(34)

Additionally, to incorporate random error, the following formulas
were applied:

reflecting its applicability to large-scale or time-sensitive problems. o+ 11
. . N =Yoo
Together, these metrics offer a comprehensive assessment of each et en (35)
model’s accuracy, estimation behavior, and computational .11
Y2 = yz._u.T_
et e”2
Table 2 In this context, the true radial score is defined as:
Configuration of producer groups by scale level and data generation parameters. N .
Prod i fx) =h : Ll (36)
T T S1Zt = - -
oducer size (x ) w X1 i Yy
Small 25 0.898 20, 60 10, 35 L . .
Mnelziuml 50 1.000 EBO 80} {1 5 70} For each scenario, five distinct sample sizes are analyzed: 50, 100,
Medium II 75 1.000 [50, 100] [25, 100] 150, 200, and 300 observations. Additionally, we consider four different
Large 100 0.927 [90, 230] [45, 135] proportions of DMUs located on the true frontier: 0 %, 5 %, 10 %, and 20

11
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Table 3
Set of available hyperparameters to perform an ACES model.

Hyperparameter  Description

n Maximum number of BFs allowed in the model after the forward
algorithm.

I3 Maximum error reduction rate required to add a BF to the model
during the forward algorithm.

max Maximum degree of variable interaction during the forward
algorithm.

@ Minimum improvement ratio over the best 1-degree BF required
to include a g—th degree BF in the model.

minspan Minimum number of observations required between two
consecutive knots. This can be a fixed integer or one of the
adaptations proposed by Friedman (1991) and Zhang (1994).

endspan Minimum number of observations required between the extreme
knots and the extremes of the data. This can be an integer or one
of the adaptations proposed by Friedman (1991) and Zhang
(1994).

grid Set of possible locations for the knots. In Friedman (1991), the
observed data points are used. However, this value can be varied
to reduce the computational load of the forward algorithm.

LOF Model coefficients are estimated using the LP models proposed

throughout the text. However, for basis evaluation, Mean

Squared Error or any other lack-of-fit metric, such as Mean

Absolute Error, can be used.

Penalty factor for retaining knots during the backward algorithm.
p Threshold that determines if the predicted output or the observed

value is used in the refinement step.

%. For these units, equations (34) and (35) are not applied, and there-
fore the observed outputs coincide with the theoretical ones, i.e., y, =
¥, r = 1, 2. Finally, each scenario is further classified into two var-
iants—those with random noise and those without. In the noisy case,
equation (35) is applied to introduce stochastic deviations, which may
cause some observations to appear above the true frontier. In the noise-
free variant, only technical inefficiency is considered through equation
(34), unless the unit lies on the true frontier, in which case no distortion
is applied.

5.1.2. Fare et al. (1994)

The second experimental design is adapted from Fare et al. (1994)
and reflects a stylized production setting where technologies exhibit
increasing, constant, and decreasing returns to scale. These simulations
are constructed in a two-input, two-output setting. In this framework,
the input side of the production function is modeled using a log-linear
Cobb-Douglas specification, while the output side follows a Constant
Elasticity of Transformation (CET) function. The input-output combi-
nations are simulated to satisfy the identity:

flx) = h(y), (€7

Table 4
Performance comparison of different approaches in the first stage of ACES in
scenarios without random noise.

border n Approach 1 Approach 2 Approach Approach 4
3
Monotonicity Only Only Only
and concavity monotonicity concavity envelopment
0% 50 0.095 0.105 0.116 0.133
100 0.066 0.058 0.061 0.067
150  0.053 0.048 0.045 0.044
5% 50 0.073 0.085 0.098 0.104
100  0.055 0.052 0.052 0.055
150 0.057 0.045 0.046 0.041
10 % 50 0.063 0.080 0.096 0.094
100  0.055 0.049 0.046 0.046
150 0.053 0.046 0.041 0.040
20 % 50 0.063 0.069 0.064 0.064
100  0.060 0.045 0.037 0.041
150  0.061 0.053 0.049 0.037
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Table 5
Performance comparison of different approaches in the first stage of ACES in
scenarios with random noise.

border n Approach 1 Approach 2 Approach Approach 4
3
Monotonicity Only Only Only
and concavity monotonicity concavity envelopment
0 % 50 0.115 0.128 0.131 0.163
100 0.092 0.083 0.088 0.085
150 0.100 0.079 0.081 0.067
5% 50 0.102 0.120 0.122 0.118
100 0.095 0.074 0.074 0.081
150 0.089 0.080 0.072 0.064
10 % 50 0.101 0.101 0.101 0.133
100 0.094 0.078 0.071 0.077
150 0.089 0.080 0.074 0.067
20 % 50 0.093 0.098 0.078 0.103
100 0.092 0.085 0.069 0.064
150 0.098 0.080 0.076 0.061
where
) = (Vo -vaz)", (38)
and
1 1
h(y) = /31 +32 (39)

From equations (38) and (39), we define four different groups of
producers. Once the sample size is fixed, each observation is randomly
assigned to one of these groups—small, medium I, medium II, or
large—with equal probability (i.e., each group receives close to 25 % of
the total observations). This approach ensures a balanced representation
across different production technologies and supports a realistic simu-
lation of varying returns to scale. For each group, the first input (x; ) and
the first output (y;) are independently drawn from uniform distribu-
tions, specifically x; ~ U(ay,by) and y; ~ U(ay,by), where (ay,b,) and
(ay,by) represent the lower and upper bounds for the input and output
variables, respectively. These bounds vary across groups to reflect dif-
ferences in scale and production capacity.

Therefore, each group is characterized by a common frontier identity
f(x) =h(y), a group-specific scale elasticity w used in equation (38), and
the specific data generation intervals for x; and y;. Table 2 summarizes
the configuration of each group:

Once the values of x; and y] are generated, the second input (x2) and
the second output (y;) are computed to ensure that each observation
satisfies the pre-assigned values of f(x) and h(y). Regarding, inefficiency
and random noise, these are introduced following the same procedure
described in the Perelman and Santin (2009) design.

Finally, the true radial score is computed as:

In this case, each scenario considers five distinct sample sizes: 25, 75,
125, 175, and 250 observations. As before, we evaluate four different
proportions of DMUs located on the true frontier: 0 %, 5 %, 10 %, and 20
%, under both noise-free and noisy conditions.

(40)

5.2. The set of available hyperparameters

The ACES algorithm offers a wide range of hyperparameters that
allow for the customization of the model according to specific re-
quirements and data characteristics. Throughout the text, several
important hyperparameters have been described, which are outlined in
Table 3:

For optimal hyperparameter selection, techniques like k-fold cross-
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Table 6

Effect of hyperparameter configuration on estimation error and computation time.
Configuration I3 £@ Monotonicity Concavity MSE Time Ranking CV
1 0.005 0 TRUE TRUE 0.02 88
2 0.010 0.50 FALSE TRUE 0.02 61
3 0.005 0 TRUE FALSE 0.04 158 13
4 0.010 0.10 TRUE TRUE 0.05 52
5 0.010 0.20 TRUE TRUE 0.05 52 7
36 0.010 0.05 FALSE FALSE 0.12 128 36
37 0.005 0.10 FALSE FALSE 0.12 128 23
38 0.010 0.10 FALSE FALSE 0.12 128 35
39 0.005 0.20 FALSE FALSE 0.12 128 34
40 0.010 0.20 FALSE FALSE 0.12 128 40

validation (CV) are recommended. In our computational experiments, a
5-fold CV approach was used, where the data is divided into five subsets.
The model is trained on four folds and tested on the fifth, repeating the
process so each fold serves as a test set once. In order to improve the
relevance of the evaluation in efficiency analysis, the predictive errors
on the test fold are weighted using DEA-based radial output efficiency
scores. Specifically, for each unit in the test fold, a DEA model is esti-
mated using only the test data, and the inverse of the resulting efficiency
score is used as a weight. This allows us to emphasize errors in more
(out-of-sample) efficient DMUs, which are more relevant from a
benchmarking perspective. The squared differences between the
(optimal) predicted and observed outputs are computed and weighted
accordingly, producing a weighted Mean Squared Error for each fold.
These values are then averaged across folds to guide hyperparameter
selection.

For standard scenarios, the following hyperparameter values are
recommended for testing. For , multiples of 10 should be considered, up
to the total number of observations in the dataset. Regarding &, typical
values could range from 0, 0.005, 0.01, 0.02 or even 0.05 if the sample
size is particularly large. For gmay, it is advisable to test values of 1 or 2,
and in cases where the number of features allows, 3 can be consid-
ered—although higher values may lead to excessive expansion of the
feature space and increased computational burden. For &9, values such
as 0, 0.05, 0.10, 0.20, or 0.50 could be tested. However, when &9 is
close to 0.50, the model often defaults to a first-degree approximation.
As a good practice, if the goal is to explore higher-degree BFs, the
maximum model degree should be set greater than one, and at least one
relatively high value of &9 should be included to ensure that only suf-
ficiently effective higher-degree terms are retained. For both minspan
and endspan, it is recommended to use the values proposed by Friedman
(1991) and Zhang (1994), or, alternatively, to omit these parameters. As
for the grid, unless computational issues arise, it is recommended to use
the dataset’s own values for the knots. Regarding, for the LOF criterion,
it is suggested to keep the Mean Squared Error (MSE) as the default,
while for the penalty factor d, reasonable values to test are 0, 1, and 2.

All the aforementioned hyperparameters directly affect the estima-
tion of the optimal output vector y;, as they intervene during the model
fitting process. In contrast, the threshold p, used in the refinement step
(28), does not influence the estimation of y;, but rather determines how

the virtual dataset {(x;,¥:) };
replace a predicted output with its observed counterpart. Typical values
include 0, 0.05, or 0.10, depending on how conservatively one wishes to
correct potentially overestimated outputs. As a rule of thumb, p = 0.05is
a reasonable and robust choice across various scenarios.

Due to the large number of simulations carried out in this study, it
was not feasible to perform an exhaustive search over the entire
hyperparameter space. For this reason, some hyperparameter were fixed
while others were varied. The maximum degree of variable interaction
Qmax Was fixed at 2; the maximum number of BFs 5 was set to the number
of DMUs in the analysis; the minimum error reduction rate £ was set to
0.005; the knot penalty d was tested with values 1 and 2; the minimum

is constructed by deciding when to
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span followed Friedman’s (1991) recommendation, while the end span
was not used; the knot grid was defined using the observed data points;
and the lack-of-fit criterion was based on the Mean Squared Error.
Additionally, the threshold p used in the refinement step was set to 0.05.
Finally, the hyperparameter £9 was tested across a range of values
specific to each simulation setting. In the experiments based on Perel-
man and Santin (2009), we used £? € {0.10,0.20,0.50}, while in the
simulations following Fare et al. (1994), we tested £? € {0,0.05,0.10}.

Beyond the hyperparameters listed in Table 2, model performance
can also be influenced by the shape constraints imposed during the first
stage of the method. These constraints—specifically, monotonicity and
concavity—can be selectively applied depending on the application
context. For instance, to construct a fully flexible envelopment model,
both constraints (26.3) and (26.4) should be omitted. If only non-
decreasing monotonicity is desired, constraint (26.3) should be
enforced, whereas constraint (26.4) ensures concavity. When both
properties are required, both constraints must be simultaneously
applied.

It is important to note that both the introduction of interaction terms
and the refinement phase can disrupt the shape constraints imposed
during the first estimation stage. In particular, the interactions trans-
form the input space in a way that may not preserve monotonicity and
concavity in the original dimensions, while the refinement step—by
selectively replacing predicted outputs with observed ones—can
directly violate any previously enforced structural properties. This
naturally leads to the following question: given that the final DEA-type
technology is constructed in the last step by applying Equation (29),
which inherently satisfies all shape axioms, is it truly necessary—or even
beneficial—to enforce monotonicity and concavity during the initial
estimation phase? In principle, these shape constraints could be treated
as an additional hyperparameter of the model, selected adaptively to
best suit the data at hand. However, instead of adopting this strategy, we
aim to offer practical guidance by analyzing the conditions under which
each configuration of shape constraints performs best. To this end, we
conduct a simulation study based on the design of Perelman and Santin
(2009), evaluating the predictive performance of four constraint con-
figurations across multiple sample sizes and noise levels.

The results are presented in Table 4 for noise-free scenarios and in
Table 5 for scenarios with random noise. In both cases, 100 independent
trials were performed for every combination of sample size and pro-
portion of units located on the true frontier. Four model configurations
were considered: (i) both monotonicity and concavity imposed
(approach 1); (ii) only monotonicity (approach 2); (iii) only concavity
(approach 3); and (iv) no shape constraints (approach 4). In all settings,
the envelopment condition was enforced to ensure that predicted out-
puts lie above the observed data.

In both scenarios, clear trends emerge that provide guidance for
characterizing ACES. When dealing with a small sample size, such as 50
units or fewer, it is generally advisable to impose both shape constraints
(approach 1) regardless of the proportion of units on the true frontier.
Conversely, with a sample size of 100 units or more, it becomes pref-
erable to impose only one of the shape constraints, regardless of which
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Computational experiments in scenarios without random noise in Perelman and Santin (2009).

% Eff. n Mean Squared Error Bias Computation time
points (ACES vs baseline model)
ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED
0% 50 0.115  0.206 0.129 1.596 0.169 -0,194 -0,333 -0,200 0,560 —0,169 10 0 5 4 1
(—44.2 (-11.1 (-92.8 (-31.9
%) %) %) %)
100 0.071 0.137 0.078 1.962 0.132 -0,148 -0,261 -0,131 0,690 0,213 34 0 13 11 1
(—48.2 (-9.7 (—96.4 (—46.3
%) %) %) %)
150 0.063 0.103 0.056 2.207 0.118 -0,082 -0,223 -0,102 0,778 -0,229 323 0 24 22 3
(-38.9 (+11.3 (-97.2 (—46.7
%) %) %) %)
200 0.051 0.083 0.043 2.320 0.105 -0,063 -0,197 -0,081 0,801 -0,210 989 0 35 38 16
(-38.2 (+18.3 (-97.8 (-51.3
%) %) %) %)
300 0.038 0.056 0.027 3.343 0.100 —0,021 —0,163 —0,056 1,071 —0,212 2920 0 93 95 21
(-31.7 (+41.9 (—98.8 (-61.6
%) %) %) %)
5% 50 0.100 0.171 0.106 1.859 0.172 —0,142 —0,286 —0,146 0,647 —0,142 10 0 5 4 0
(-41.3 (-4.9 (-94.6 (—41.5
%) %) %) %)
100 0.056 0.109 0.064 2.512 0.100 —0,105 —0,214 —0,083 0,837 -0,184 40 0 12 10 1
(—48.6 (-11.8 (-97.8 (—43.9
%) %) %) %)
150 0.047 0.082 0.048 2.071 0.099 -0,041 -0,177 -0,051 0,739 0,194 342 0 22 19 5
(—42.7 (-0.8 (-97.7 (-52.3
%) %) %) %)
200 0.043 0.056 0.030 2.557 0.092 -0,010 -0,150 -0,032 0,891 -0,189 909 0 34 31 12
(-23.6 (+45.0 (—98.3 (-53.5
%) %) %) %)
300 0.036 0.044 0.025 3.630 0.092 0,018 -0,122 -0,013 1,102 -0,201 3161 0 77 93 22
(-19.9 (+44.7 (—99.0 (-61.4
%) %) %) %)
10 % 50 0.082  0.149 0.092 1.846 0.144 -0,106 -0,260 -0,123 0,697 -0,070 15 0 8 5 0
(—44.7 (-10.5 (-95.5 (—42.7
%) %) %) %)
100 0.049 0.091 0.054 1.846 0.095 -0,075 -0,185 -0,052 0,747 0,159 51 0 19 17 1
(—46.6 (-9.8 (-97.4 (—48.4
%) %) %) %)
150 0.044 0.061 0.035 2.161 0.085 -0,015 -0,146 -0,021 0,788 -0,165 390 0 25 23 3
(-28.6 (+23.8 (—98.0 (—48.6
%) %) %) %)
200 0.041 0.047 0.027 2.595 0.081 0,015 -0,123 -0,005 0,899 -0,162 967 0 35 33 8
(-12.3 (+52.6 (-98.4 (—48.6
%) %) %) %)
300 0.037 0.033 0.021 3.249 0.071 0,047 -0,091 0,015 1,051  -0,147 3041 0 75 71 29
(+13.8 (+80.6 (—98.8 (—47.7
%) %) %) %)
20 % 50 0.060  0.105 0.067 1.966 0.146 -0,052 -0,195 -0,057 0,757 —-0,056 10 0 5 3 0
(-42.9 (-10.5 (-97.0 (-59.1
%) %) %) %)
100 0.035 0.070 0.048 2.288 0.070 -0,026 -0,134 -0,005 0,831 —-0,100 37 0 12 10 1
(-49.5 (-26.2 (-98.5 (—49.5
%) %) %) %)
150 0.043 0.044 0.029 2.556 0.063 0,034 -0,103 0,014 0,905 —0,097 411 0 28 30 6
(3.4 (+47.8 (—98.3 (-32.4
%) %) %) %)
200 0.042 0.038 0.027 2.626 0.054 0,053 —-0,084 0,026 0,926  —0,098 883 0 34 37 6
(+9.5 (+52.7 (—98.4 (-22.7
%) %) %) %)
300 0.033 0.028 0.020 3.022 0.051 0,065 -0,065 0,033 1,022  -0,081 2522 0 77 73 33
(+16.7 (+58.8 (-98.9 (—36.8

%) %) %) %)

one (approach 2 or 3). When the sample size reaches 150 units or more,
it is most effective to impose the envelopment conditions (approach 4).
This trend occurs because, as the sample size increases, the units natu-
rally tend to align more closely with the true production frontier and its
geometrical features. In contrast, with smaller sample sizes, the addi-
tional information from the shape of the DGP improves model
performance.

Although the section provides practical guidance on how to select
the hyperparameters of the ACES model, in practice—and whenever
computational resources allow—it is recommended to perform a CV
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procedure to identify the most suitable configuration. To illustrate this,
we present a minimal example based on the simulation framework
proposed by Fare et al. (1994) , using a dataset of 100 DMUs. This
experiment explores the sensitivity of the method to hyperparameter
selection by applying a 5-fold CV under varying configurations, assess-
ing its impact on both the prediction error and the computational time.
In particular, we test two values for the minimum error reduction rate
£€{0.005,0.01}; five values for the interaction threshold
£2) € {0,0.05,0.10,0.20,0.50}; and all possible combinations of
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Table 8

Computational experiments in scenarios with random noise in Perelman and Santin (2009).

% Eff. points n Mean Squared Error Bias Computation time
(ACES vs baseline model)
ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED
0 % 50 0,143 0,233 0,158 1,785 0,234 —-0,153 —-0,319 -0,172 0,658 -0,137 15 0 8 5 0
(—38.8 %) (—9.4 %) (—92.0 %) (—39.0 %)
100 0,085 0,127 0,083 2,004 0,143 —0,094 -0,217 —-0,077 0,729 —-0,214 36 0 13 11 1
(-32.8 %) (+3.1 %) (—95.8 %) (—40.3 %)
150 0,087 0,116 0,083 2,510 0,141 —0,043 -0,174 —0,036 0,822 —0,222 321 0 24 22 3
(—24.3 %) (+5.8 %) (—96.5 %) (—38.0 %)
200 0,077 0,098 0,075 3,058 0,131 0,003 —-0,138 —0,002 1,001 —-0,212 1036 0 30 49 10
(—21.5 %) (+2.0 %) (—97.5 %) (—41.6 %)
300 0,081 0,069 0,061 4,159 0,128 0,066 —0,089 0,038 1,216 —-0,217 3659 0 55 111 14
(+17.0 %) (+32.3 %) (—98.1 %) (-37.1 %)
5% 50 0,130 0,188 0,125 1,748 0,198 -0,115 -0,277 —-0,132 0,651 —-0,137 14 0 4 5 0
)-30.7 %) (+4.4 %) (—92.6 %) (—34.2 %)
100 0,079 0,126 0,087 2,111 0,132 —0,082 —0,193 —0,052 0,741 —0,202 50 0 19 17 1
(—37.0 %) (—9.4 %) (—96.2 %) (—40.0 %)
150 0,074 0,085 0,065 2,582 0,115 0,000 —-0,133 0,005 0,862 —-0,186 434 0 34 34 3
(—12.7 %) (+14.4 %) (—97.1 %) (—35.4 %)
200 0,078 0,081 0,067 3,248 0,109 0,039 —-0,108 0,024 1,027 -0,179 1203 0 56 59 9
(—3.20 %) (+17.9 %) (—97.6 %) (—28.3 %)
300 0,085 0,063 0,059 4,111 0,113 0,084 —0,069 0,053 1,203 —-0,197 3941 0 102 109 15
(+35.5 %) (+43.4 %) (—97.9 %) (—25.0 %)
10 % 50 0,113 0,185 0,129 2,075 0,172 —-0,095 —0,250 —-0,102 0,711 -0,125 11 0 5 3 0
(—39.2 %) (—12.7 %) (—94.6 %) (—34.3 %)
100 0,069 0,102 0,074 2,317 0,125 —0,043 —-0,161 —-0,016 0,803 —-0,150 38 0 12 10 2
(-32.7 %) (—7.0 %) (—97.0 %) (—45.0 %)
150 0,072 0,085 0,069 2,845 0,101 0,020 —0,116 0,019 0,948 —-0,156 338 0 23 20 4
(—15.3 %) (+5.0 %) (—97.5 %) (—28.7 %)
200 0,073 0,071 0,062 3,504 0,103 0,050 —0,089 0,038 1,016 -0,170 994 0 36 33 8
(+2,6%) (+17.9 %) (—97.9 %) (—29.2 %)
300 0,080 0,057 0,057 4,292 0,096 0,091 —0,052 0,065 1,250 —0,164 3508 0 71 68 14
(+41.6 %) (+41.8 %) (—98.1 %) (—16.0 %)
20 % 50 0,090 0,138 0,100 1,994 0,178 —0,036 —-0,186 —0,045 0,766 —0,068 11 0 4 3 0
(—34.4 %) (—9,9%) (—95.5 %) (—49.4 %)
100 0,055 0,079 0,062 2,204 0,083 —-0,013 —-0,121 0,012 0,846 —0,092 37 0 11 9 2
(-31.2 %) (-11.5 %) (—97.5 %) (—34.2 %)
150 0,063 0,066 0,056 2,403 0,082 0,048 —0,085 0,037 0,890 -0,119 317 0 22 19 5
(—5.1 %) (+11.6 %) (=97.4 %) (-23.9 %)
200 0,071 0,054 0,050 2,857 0,075 0,077 —0,061 0,055 0,987 -0,110 925 0 35 32 9
(+31.8 %) (+40.5 %) (—97.5 %) (—5.5 %)
300 0,067 0,047 0,047 3,726 0,067 0,100 —0,036 0,066 1,174 —0,083 2730 0 75 78 23
(+44.6 %) (+42.1 %) (98.2 %) (+0.1 %)
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Table 9

Computational experiments in scenarios withrandom noise in Fare et al. (1994).
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% Eff. n Mean Squared Error Bias Computation time
points (ACES vs baseline model)
ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED
0% 25 0,243 0,406 0,308 0,749 -0,327 -0,453 -0,330 0,321 9 0 2 2
(—40.2 (21.2 (-67.6
%) %) %)
75 0,094 0,310 0,227 1,407 0,242 -0,180 -0,337 -0,205 0,626 0,164 40 0 13 11 1
(-69.7 (-58.5 (-93.3 (-61.2
%) %) %) %)
125 0,053 0,259 0,184 1,426 0,168 -0,114 -0,282 -0,148 0,675 -0,159 71 0 19 18 5
(-79.4 (-71.0 (-96.3 (-68.3
%) %) %) %)
175 0,062 0,236 0,167 1,607 0,233 -0,118 -0,251 -0,122 0,758 -0,130 834 0 26 39 5
(-73.6 (-62.7 (-96.1 (-73.2
%) %) %) %)
250 0,050 0,236 0,169 2,284 0,124 —0,088 —0,227 —0,102 0,966 —0,145 2360 0 75 78 19
(-78.6 (-70.2 (-97.8 (-59.4
%) %) %) %)
5% 25 0,184 0,372 0,289 0,850 —0,247 —0,386 —0,264 0,366 8 0 2 2
(-50.5 (-36.2 (-78.3
%) %) %)
75 0,068 0,251 0,173 1,316 0,303 -0,131 —0,292 —0,159 0,653 —0,084 38 0 7 10 2
(-72.9 (-60.8 (-94.8 (-77.6
%) %) %) %)
125 0,047 0,242 0,174 1,472 0,245 -0,088 -0,255 -0,121 0,701 0,107 97 0 25 26 3
(—80.8 (-73.2 (—96.8 (-81.0
%) %) %) %)
175 0,049 0,224 0,161 2,077 0,123 -0,086 -0,224 -0,098 0,878 -0,132 961 0 44 48 6
(-78.3 (—69.8 (-97.7 (—-60.4
%) %) %) %)
250 0,042 0,214 0,155 2,671 0,110 -0,056 -0,199 -0,075 1,071 -0,111 2611 0 81 85 23
(—80.4 (-72.9 (—98.4 (-61.8
%) %) %) %)
10 % 25 0,168 0,308 0,230 0,872 -0,224 -0,351 -0,220 0,402 9 0 4 2
(—45.4 (-27.1 (—80.8
%) %) %)
75 0,066 0,272 0,205 1,287 0,205 -0,097 -0,269 -0,134 0,641 0,085 30 0 8 6 1
(-75.7 (-67.7 (-94.9 (-67.7
%) %) %) %)
125 0,039 0,227 0,168 1,508 0,136 -0,057 -0,226 -0,097 0,728 -0,129 76 0 18 15 3
(-82.7 (-76.5 (-97.4 (-71.1
%) %) %) %)
175 0,046 0,222 0,165 1,653 0,116 -0,068 -0,205 -0,078 0,793 -0,101 999 0 45 45 7
(-79.2 (-72.0 (-97.2 (-60.3
%) %) %) %)
250 0,039 0,216 0,161 2,514 0,106 -0,039 -0,187 -0,068 1,050 —0,099 2934 0 84 87 25
(-82.0 (-75.8 (-98.5 (-63.2
%) %) %) %)
20 % 25 0,126 0,245 0,182 0,765 —0,178 —0,299 —0,168 0,407 6 0 2 1
(—48.7 (-30.8 (-83.6
%) %) %)
75 0,045 0,215 0,164 1,550 0,276 -0,058 -0,217 -0,088 0,729 —0,010 29 0 9 7 2
(-78.9 (-72.4 (-97.1 (-83.6
%) %) %) %)
125 0,031 0,185 0,139 1,883 0,120 -0,027 -0,185 -0,058 0,822 0,084 74 0 17 15 3
(-83.3 (-77.7 (—98.4 (-74.2
%) %) %) %)
175 0,033 0,172 0,129 1,704 0,086 -0,031 -0,164 -0,046 0,818 -0,087 853 0 32 33 7
(—80.6 (-74.0 (—98.0 (-61.3
%) %) %) %)
250 0,028 0,177 0,134 2,260 0,080 -0,006 -0,150 -0,037 0,964 —0,091 2334 0 57 56 17
(—84.2 (=79.0 (—98.8 (—65.2

%) %) %) %)

enforcing or not enforcing monotonicity and concavity.

Table 6 presents the five best and five worst hyperparameter con-
figurations out of the forty evaluated in this experiment. For each
configuration, the table reports the value of the assessed hyper-
parameters, the true mean squared error (MSE), the computational time
(in seconds), and the ranking position derived from CV (column
“Ranking_CV™).

Some considerations must be made regarding the influence of
hyperparameters on model performance and computational cost. First,
the results depend heavily on the selected configuration, as even small
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changes in the hyperparameter values can lead to noticeable variations
in both error and runtime. While cross-validation does not always select
the absolute best configuration, it consistently identifies high-
performing ones, making it the preferred approach for tuning in prac-
tical applications. Additionally, the computational time is strongly
driven by these few hyperparameters—particularly the error reduction
threshold ¢ and the shape constraints. While the former allows for a
longer forward selection stage, the latter can slow down the convergence
of the model if shape constraints are needed but not enforced, as the
model may compensate by incorporating a larger number of BFs to
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Table 10
Computational experiments in scenarios without random noise in Fare et al. (1994). (* Omitted due to anomalous results).
% Eff. n Mean Squared Error Bias Computation time
points (ACES vs baseline model)
ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED
0% 25 0,229 0,388 0,285 0,734 —0,336 —0,449 —0,324 0,298 * 6 0 2 1
(—40.9 (-19.6 (—68.7
%) %) %)
75 0,096 0,278 0,194 1,094 0,379 -0,211 —0,353 —0,230 0,543 —0,066 36 0 7 9 2
(—65.5 (-50.7 (-91.2 (-74.7
%) %) %) %)
125 0,068 0,269 0,187 1,116 0,209 -0,175 —0,329 —0,207 0,567 —0,144 73 0 17 15 11
(-=74.7 (—-63.7 (=939 (-67.5
%) %) %) %)
175 0,070 0,255 0,178 1,412 0,136 -0,170 —0,302 —0,185 0,636 -0,184 867 0 32 30 12
(=727 (—-60.8 (—-95.1 (—48.9
%) %) %) %)
250 0,055 0,240 0,168 1,932 0,119 —0,142 -0,277 -0,165 0,825 —-0,142 2542 0 58 56 16
(-=77.3 (—67.4 (-97.2 (-54.0
%) %) %) %)
5% 25 0,184 0,370 0,284 0,853 * -0,272 —0,404 -0,283 0,377 * 9 0 4 2 *
(—50.4 (-35.4 (-78.5
%) %) %)
75 0,073 0,282 0,204 1,249 0,237 -0,165 -0,320 -0,192 0,595 —0,071 38 0 13 11 3
(-=74.0 (—64.2 (—94.1 (—69.1
%) %) %) %)
125 0,049 0,228 0,161 1,174 0,158 —0,122 —0,269 —0,147 0,595 -0,139 98 0 19 25 22
(-78.7 (—69.7 (-95.9 (—69.3
%) %) %) %)
175 0,055 0,231 0,164 1,591 0,138 -0,131 —0,260 —0,143 0,747 —0,151 599 0 26 22 9
(-76.4 (—66.7 (—96.6 (—60.5
%) %) %) %)
250 0,041 0,221 0,156 2,121 0,121 —0,099 —0,238 —0,122 0,880 -0,122 1553 0 42 35 19
(-81.4 (-73.5 (—98.1 (—66.0
%) %) %) %)
10 % 25 0,147 0,324 0,242 0,721 —0,232 —0,366 —0,234 0,341 * 6 0 2 1
(-54.6 (—39.2 (-=79.6
%) %) %)
75 0,067 0,252 0,180 1,519 0,409 —0,136 —0,294 —0,164 0,693 0,006 27 0 7 6 3
(-73.5 (—-62.8 (—-95.6 (—83.6
%) %) %) %)
125 0,040 0,216 0,154 1,449 0,139 —0,092 —0,249 —0,125 0,691 -0,115 73 0 17 15 7
(-81.3 (-73.8 (-97.2 (-71.0
%) %) %) %)
175 0,047 0,214 0,151 1,978 0,136 —0,095 —0,231 -0,111 0,867 -0,115 587 0 34 33 7
(-78.2 (—69.0 (-97.6 (—65.7
%) %) %) %)
250 0,033 0,200 0,143 2,294 0,098 —0,067 —0,209 —0,095 0,953 -0,115 2280 0 52 51 27
(—83.6 (77.0 (—98.6 (—66.4
%) %) %) %)
20 % 25 0,144 0,289 0,223 0,978 * -0,198 -0,324 —0,200 0,478 * 6 0 2 1 *
(—50.2 (-35.2 (—85.2
%) %) %)
75 0,048 0,199 0,146 1,559 0,218 —0,085 —0,231 —0,107 0,722 —0,046 29 0 8 6 3
(=75.7 (—66.8 (-96.9 (-77.8
%) %) %) %)
125 0,029 0,184 0,135 1,633 0,135 —0,048 —0,196 —0,073 0,785 —0,075 61 0 15 12 9
(—84.4 (-78.8 (—98.2 (-78.7
%) %) %) %)
175 0,031 0,178 0,131 1,696 0,095 —0,048 —0,183 —0,069 0,785 —0,103 522 0 22 18 9
(-82.3 (-76.0 (—98.1 (—-67.5
%) %) %) %)
250 0,025 0,173 0,127 2,305 0,081 —0,031 —0,168 —0,059 0,953 -0,108 1486 0 43 35 18
(-85.3 (—80.0 (—98.9 (—68.6
%) %) %) %)
Table 11
Aggregated results by number of DMUs on the true frontier (Fare et al., 1994).
border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED
0% —66.2 % —52.4% —89.2 % —61.3 % —68.3 % —56.7 % —90.2 % —65.5 %
5% —-72.2% —61.9 % —92.6 % —66.2 % —72.6 % —62.6 % —-93.2% -70.2 %
10 % —74.2% —64.4 % —93.7 % -71.7 % -73.0% —63.8 % —-93.7 % —65.6 %
20 % —75.6 % —67.4 % —95.5 % —-73.0 % -75.1 % —66.8 % —95.2% —-71.1%
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Table 12
Aggregated results by sample size (Fare et al., 1994).
border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED
25 —49.0 % -32.3% —78.0 % —46.2 % —28.8 % —77.6 %
75 -72.2% —61.1 % —94.5 % -76.3 % -74.3 % —64.9 % —95.0 % —-72.5%
125 —79.8 % -71.5% -96.3 % -71.6 % —-81.5% -74.6 % —-97.2% —73.6 %
175 —77.4% —68.1 % —96.9 % —60.5 % -77.9 % —69.6 % —-97.3% —63.8 %
250 —81.9 % —74.5 % —98.2 % —63.7 % —-81.3% -74.5% -98.4 % —62.4 %
Table 13
Aggregated results by number of DMUs on the true frontier (Perelman and Santin, 2009).
border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED
0% —40.2 % +10.1 % —96.6 % —47.6 % —-20.1 % +6.8 % —96.0 % —-39.2%
5% —-35.2% +14.4 % —-97.5% —50.5 % —-9.6 % +14.0 % —-96.3 % -32.6 %
10 % -23.7 % +27.3 % —97.6 % —47.2% —8.6 % +9.0 % —-97.0 % —30.7 %
20 % —-13.9% —24.5% —98.2 % —40.1 % +1.1% +14.5 % —97.2% -22.6 %
Table 14
Aggregated results by sample size (Perelman and Santin, 2009).
border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED
50 —43.3 % —9.3% —95.0 % —43.8 % —35.8% —6.9 % —93.6 % —39.2%
100 —48.2 % —-14.4 % —-97.5 % —47.0 % -33.4% —-6.2 % —96.6 % —-39.9%
150 —28.4 % +20.5 % —97.8 % —45.0 % -14.3 % +9.2% —97.1 % —-31.5%
200 -16.1 % +42.2 % —98.2 % —44.0 % +2.4% +19.4 % —97.6 % —26.2%
300 —53% +56.5 % —98.9 % —-51.9% +34.7 % +39.9 % -98.1 % —19.5 %
Table 15
Efficiency measures obtained from the empirical example.
Bak Output-oriented radial model Input-oriented radial model Directional Distance Function
ACES ACES DEA ACES ACES DEA ACES ACES DEA
1 2 1 2 1 2
Bank SinoPac 1.14 1.17 1.11 0.86 0.83 0.89 0.07 0.09 0.05
Bank of Kaohsiung 1.38 1.40 1.36 0.63 0.62 0.65 0.19 0.19 0.18
Bank of Panhsin 1.76 1.75 1.75 0.37 0.37 0.37 0.34 0.34 0.34
Bank of Taiwan 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Cathay United Bank 1.40 1.41 1.38 0.69 0.69 0.71 0.17 0.18 0.17
Chang Hwa Bank 1.07 1.11 1.06 0.93 0.90 0.94 0.04 0.05 0.03
China Development 1.00 1.18 1.00 1.00 0.56 1.00 0.00 0.13 0.00
China Trust Bank 1.01 1.00 1.00 0.98 1.00 1.00 0.01 0.00 0.00
Cooperative Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Cosmos Bank 2.26 2.25 2.24 0.23 0.23 0.23 0.52 0.52 0.52
Cota Bank 1.75 1.81 1.64 0.48 0.48 0.49 0.33 0.34 0.28
E. Sun Bank 1.12 1.12 1.12 0.84 0.84 0.84 0.08 0.08 0.08
Entie Bank 1.45 1.55 1.19 0.66 0.61 0.81 0.20 0.24 0.10
Export-Import Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Far Eastern Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
First Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Hua Nan Bank 1.06 1.08 1.05 0.94 0.91 0.94 0.03 0.04 0.03
Hwatai Bank 1.74 1.73 1.73 0.34 0.33 0.35 0.36 0.36 0.35
Industrial Bank of Taiwan 1.58 1.58 1.00 0.72 0.72 1.00 0.26 0.26 0.00
Jih Sun Bank 1.73 1.72 1.63 0.43 0.43 0.48 0.32 0.32 0.28
Land Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Mega Bank 1.01 1.03 1.00 0.98 0.96 1.00 0.01 0.02 0.00
Shin Kong Bank 1.36 1.35 1.35 0.70 0.70 0.70 0.16 0.16 0.16
Sunny Bank 1.45 1.44 1.44 0.59 0.60 0.60 0.22 0.21 0.21
Ta Chong Bank 1.25 1.31 1.14 0.74 0.72 0.86 0.13 0.15 0.07
Taichung Bank 1.33 1.36 1.29 0.70 0.68 0.73 0.16 0.17 0.14
Taipei Fubon Bank 1.00 1.04 1.00 1.00 0.93 1.00 0.00 0.03 0.00
Taishin Bank 1.21 1.25 1.19 0.80 0.76 0.82 0.10 0.12 0.09
Taiwan Business Bank 1.05 1.05 1.03 0.95 0.95 0.97 0.03 0.03 0.02
The Shanghai Bank 1.15 1.18 1.11 0.84 0.80 0.89 0.07 0.09 0.06
Union Bank 1.71 1.70 1.69 0.49 0.50 0.50 0.30 0.29 0.29
Mean 1.29 1.31 1.24 0.77 0.75 0.80 0.13 0.14 0.11
Median 1.15 1.18 1.11 0.83 0.76 0.89 0.08 0.12 0.06
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reduce the error, thus increasing the computational burden.
5.3. Comparative analysis

In this final section on computational experiments, we present a
comparative analysis of the performance of ACES, DEA, StoNED, CEAT,
and BDEA across the previously described scenarios. For the ACES
model, and following the guidance provided in Tables 4 and 5, the re-
sults are reported using the following configurations: Approach 1 for
sample sizes of 50 and 75; Approach 3 for sample sizes of 100 and 125;
and Approach 4 for sample sizes of 150, 175, 200, 250, and 300.
Accordingly, Tables 7 and 8 present the results corresponding to the
Perelman and Santin (2009) design, while Tables 9 and 10 show those
obtained under the framework of Fare et al. (1994).

The first two columns of Tables 7, 8, 9, and 10 indicate the propor-
tion of DMUs located on the true frontier and the total number of DMUs
evaluated in each scenario. The remaining columns compare the per-
formance of the different methodologies in terms of estimation error,
bias, and computation time. All percentage differences are expressed
with respect to the competing methods. In this way, a negative value
denotes that ACES outperforms the corresponding method (i.e., achieves
lower error), while a positive value indicates a performance deficit.
Finally, note that results for Fare et al. (1994) and StoNED with a sample
size of 25 are not reported, as they led to abnormally large values that
distorted the true performance of the methods and would have under-
mined the comparability of the results.

We now detail the performance differences observed across the two
experimental settings: Perelman and Santin (2009) and Fare et al.
(1994). In the latter, the results are particularly compelling. ACES out-
performs all competing methods in every scenario tested—regardless of
noise levels or the proportion of efficient units. Error reductions related
to CEAT exceed 90 % in nearly all cases, while improvements over DEA,
BDEA, and StoNED range from 19.6 % to 85.3 %. Overall, no systematic
performance differences are observed between noisy and noise-free
settings; however, a clear trend emerges whereby the relative advan-
tage of ACES increases with both sample size and the proportion of
DMUs located on the true frontier. Tables 11 and 12 summarize these
results.

In the case of the Perelman and Santin (2009) scenarios, ACES
maintains strong performance relative to most benchmark methods.
Notably, it consistently achieves error reductions exceeding 90 % when
compared to CEAT. ACES also outperforms StoNED across all config-
urations—regardless of noise levels, sample size, or the proportion of
efficient units—with a larger margin of improvement observed in noise-
free settings. In the presence of stochastic noise, however, the perfor-
mance gap between StoNED and ACES narrows as both the sample size
and the number of units on the true frontier increase, suggesting that
StoNED benefits more from larger, noise-contaminated datasets where
its stochastic structure becomes more effective. A similar pattern is
observed when comparing ACES to standard DEA. In both noisy and
noise-free settings, the performance of the two methods converges as the
sample size and the proportion of efficient units increase. In particular,
under noise-free conditions, DEA slightly outperforms ACES in scenarios
with a sample size of 200 or more and when 20 % of the units lie on the
true frontier. This suggests that DEA may benefit from its nonparametric
envelopment structure in large, well-populated datasets where the
frontier is densely represented. Finally, BDEA consistently delivers su-
perior results in this class of scenarios. Its advantage over ACES becomes
more pronounced as the sample size increases and a larger proportion of
DMUs lie on the true frontier. These findings reinforce the strengths of
bootstrap-based bias correction in well-populated and frontier-dense
datasets, where resampling techniques can more effectively capture
the underlying efficiency structure. Tables 13 and 14 summarize these
results.

As a concluding remark, it is important to acknowledge two key
limitations of the ACES methodology, both of which are closely
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interrelated: computational cost and hyperparameter tuning. Although
ACES demonstrates robust empirical performance, its computational
burden grows rapidly with the number of DMUs. As evidenced in
Tables 7-10, the runtime increases at an exponential rate as the sample
size expands. This effect becomes critical when the number of DMUs
exceeds 300, even under moderate dimensionality (e.g., four input
variables and second-degree interactions). The main computational
bottleneck arises from the number of times model (26) must be solved
during the forward selection stage, which is directly driven by the size of
the candidate BF set defined in (6). Consequently, a promising direction
for future research would be to design more efficient strategies to
intelligently reduce the size of the candidate set—focusing only on
potentially viable BFs—thereby improving scalability without compro-
mising estimation quality. In addition, the high computational cost
hinders thorough exploration of the hyperparameter space. Parameters
such as the error reduction threshold, or the maximum degree of
interaction play a critical role in balancing model flexibility and over-
fitting risk. However, the ability to systematically evaluate different
configurations through cross-validation is severely limited by runtime
constraints, particularly in large-scale settings. As such, the develop-
ment of faster heuristics or adaptive tuning strategies would be essential
to unlock the full potential of ACES in practice.

6. An empirical illustration

In this section, we apply a real dataset to demonstrate the perfor-
mance of various technical efficiency measures using ACES. The dataset
includes information on 31 Taiwanese banks for the year 2010, previ-
ously analyzed by Juo et al. (2015). The inputs considered are financial
FUNDS (x1), LABOR (x2), and physical CAPITAL (x3), while the outputs
are financial INVESTMENTS (y;) and LOANS (y2). All monetary vari-
ables are measured in million TWD, with labor measured as the number
of employees. To improve the numerical stability of the algorithm, all
monetary variables were rescaled by dividing them by 1,000. A detailed
discussion of the statistical sources and variable definitions is available
in Juo et al. (2015).

Regarding the ACES configuration, we tuned three key hyper-
parameters: the error reduction threshold ¢ e {0.005,0.01}, the
required improvement of a 3-degree and 2-degree BF over the best 1-de-
gree candidate £® = £® € {0,0.05,0.10}; and the penalty per knot
d € {1,2}. Monotonicity and concavity are both imposed in the initial
stage due to the sample size lower than 50 DMUs. The two best results
were obtained by the following configurations: £ = 0.005, £? = £3) =
0.10andd = 1 (ACES 1) and (ii) £ = 0.010,¢? =¢® =0.05andd = 1
(ACES 2).

Table 15 presents the results for different efficiency measures. The
first column lists the assessed bank. The next three blocks, each with
three columns, correspond to the efficiency models used in our study:
the output-oriented radial model (30), the input-oriented radial model
(31) and the Directional Distance Function (32). For the DDF, the
directional vector (G, Gy) = (Xo1,X02,X03,Yo1,Y02) is used to evaluate
each DMU. Finally, each column in these blocks represents a different
approach: DEA, ACES 1 and ACES 2.

Table 7 demonstrates that DEA consistently produces more opti-
mistic efficiency assessments across all evaluated cases. This outcome is
primarily due to DEA’s omission of the minimum extrapolation princi-
ple, which typically positions the production frontier as close as possible
to the observed data points. Moreover, the results reveal that different
configurations of ACES (ACES 1 and ACES 2) lead to notably different
efficiency evaluations. For example, under the radial output approach,
the mean score in ACES 1 is 1.29, in ACES 2 is 1.31, while in DEA it is
1.24. Consequently, the density of ACES scores tends to decrease around
1, indicating fewer units at the efficiency threshold, while it increases
throughout the rest of the distribution, reflecting a more realistic esti-
mation of efficiency.
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7. Conclusions

This paper introduces the Adaptive Constrained Enveloping Splines
(ACES) as an innovative approach to enhancing the accuracy of effi-
ciency analysis in multi-output and multi-input production settings.
Building on the foundational work of Espana et al. (2024), ACES ad-
vances this framework by implementing a three-stage process that de-
livers a more realistic and robust estimation of the production frontier
compared to conventional methods, at least following out configurations
of simulated scenarios.

In particular, our computational experiments show that ACES
consistently outperforms DEA, StoNED, and CEAT across a variety of
simulated scenarios, especially in terms of mean squared error and bias
reduction. This advantage is robust across different sample sizes and
noise conditions. Regarding Bootstrapped DEA, ACES only shows a clear
improvement in the scenarios based on the design proposed by Fare
et al. (1994), where the production technology exhibits varying returns
to scale. These results suggest that while bootstrapping enhances the
inferential capabilities of DEA, ACES offers a more accurate estimation
in complex or heterogeneous production environments.

This study also provides guidance on configuring ACES to achieve
optimal performance. While most hyperparameters can be tuned using
k-fold cross-validation, as is common in Machine Learning, specific
recommendations for shaping the estimator during the first stage of the
method have been detailed. The results indicate that for small sample
sizes (e.g., 50 units or fewer), it is advantageous to impose both
monotonicity and concavity constraints to enhance model accuracy. As
the sample size increases to 100 units or more, applying only one of
these constraints suffices. For even larger samples (150 units or more),
the best results are obtained by relying exclusively on the envelopment
conditions. Furthermore, this paper includes an empirical case study
demonstrating how to apply various efficiency measures using an ACES
model.

In conclusion, ACES offers a significant advancement in the field of
efficiency analysis. The method’s ability to integrate shape constraints
and handle noisy data makes it particularly valuable in real-world ap-
plications where sample sizes and data quality can vary. While ACES
requires more computational resources than alternative approaches, the
trade-off is justified by the substantial improvements in accuracy and
robustness, making it a valuable tool for researchers and practitioners in
efficiency analysis.
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