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A B S T R A C T

Data Envelopment Analysis (DEA) is a widely used method for evaluating the relative efficiency of decision- 
making units, but it often yields overly optimistic efficiency estimates, particularly with small sample sizes. 
To overcome this limitation, we introduce Adaptive Constrained Enveloping Splines (ACES), a non-parametric 
technique based on regression splines to accommodate multi-output, multi-input production contexts. ACES 
employs a three-stage estimation process. In the first stage, optimal output levels are estimated while incorpo
rating essential envelope constraints, with optional monotonicity and/or concavity adjustments as needed. In the 
second stage, a refinement phase is carried out in which some of the estimates made are replaced by the observed 
values. Finally, a DEA-type technology is constructed using a new virtual data sample, ensuring adherence to 
usual shape constraints. Although ACES entails a higher computational cost, it achieves substantially lower mean 
squared error and bias than alternative methods of the literature across a wide range of simulated scenarios. This 
improvement is particularly pronounced in settings with complex production structures or heterogeneous returns 
to scale. This performance is consistent across both noise-free and noisy data environments, underscoring the 
method’s robustness and accuracy.

1. Introduction

Efficiency analysis is the discipline focused on evaluating a set of 
observations, commonly referred as Decision-Making Units (DMUs), in 
terms of their transformation process from inputs to outputs. Under
standing and improving efficiency is of paramount importance for or
ganizations aiming to optimize their resource allocation and output 
generation in manufacturing, healthcare, finance, or any public sector.

Non-parametric frontier methods are widely used in measuring ef
ficiency in production theory. These methodologies allow researchers to 
assess the performance of DMUs by comparing their actual output level 
against a frontier that represents the best achievable output for a given 
input profile. By capturing the gap between observed performance and 
the estimated frontier, these methods provide a valuable insight into the 
potential for improvement in areas where inefficiencies may be present. 
These types of frontiers are generally estimated through Data Envelop
ment Analysis (DEA) introduced by Charnes et al. (1978) and Banker 
et al. (1984), or Free Disposal Hull (FDH) proposed by Deprins et al. 
(1984). These non-parametric approaches present some benefits 
regarding their parametric counterparts, such as Stochastic Frontier 

Analysis (SFA), introduced by Aigner et al. (1977) and Meeusen and van 
Den Broeck (1977) . For example, they can estimate the frontier with 
greater flexibility, as they do not require assumptions about the func
tional form of the data, as well as they handle multi-input and multi- 
output scenarios without imposing prior weights on the dimensions 
considered.

Nevertheless, DEA (and FDH) has faced criticism due to its non- 
statistical nature, leading some authors to label it as a merely descrip
tive tool at a frontier level with limited inferential capabilities (Esteve 
et al., 2020; Tsionas, 2022; Valero-Carreras et al., 2022; and Molinos- 
Senante et al., 2023). Enveloping techniques such as DEA or FDH locate 
the efficient frontier as close as possible to the data sample, relying on 
the principle of minimal extrapolation. While these techniques accu
rately measure efficiency for a specific and known set of observations, 
they are prone to suffering from overfitting. In this context, Korostelev 
et al. (1995) demonstrated that when applying DEA to a finite sample of 
identically and independently distributed observations drawn from a 
Data Generation Process (DGP), the estimated frontier exhibits a 
downward bias relative to the true frontier underlying the DGP. The 
overfitting problem in DEA has a direct impact on the results, leading to 
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a significant portion of the evaluated DMUs being identified as techni
cally efficient. This fact suggests that a DMU should not be regarded as 
(truly) efficient even if the DEA models indicate it as such. In general, 
DEA scores are particularly susceptible to overoptimism, which becomes 
even more pronounced when the dimensionality of the analysis in
creases. In fact, the curse of dimensionality is a common issue in DEA, 
occurring when the ratio of DMUs to variables (inputs and outputs) is 
not large enough. This phenomenon has been discussed in studies such 
as Adler and Golany (2007), Wilson (2018), Charles et al. (2019) and 
Chen et al. (2021).

To overcome these limitations in the non-parametric approach, 
particularly in estimating technical efficiency at an inferential level 
rather than a sample-specific based evaluation, several authors have 
striven over the past few decades to introduce alternative methodologies 
that complement (or replace) DEA. For instance, Simar and Wilson 
(1998, 2000) employed bootstrapping techniques to calculate confi
dence intervals for efficiency scores estimated through DEA. Aragon 
et al. (2005) proposed a non-parametric estimator of the efficient fron
tier based on conditional quantiles from a relevant production process 
distribution. Building upon these concepts, Daouia and Simar (2007)
further expanded on this approach. Kuosmanen and Johnson (2010)
introduced the Corrected Concave Nonparametric Least Squares 
(C2NLS) regression as a reinterpretation of DEA, aiming to estimate the 
underlying theoretical production function that generated the observed 
data sample. Parmeter and Racine (2013) proposed smooth constrained 
nonparametric and semiparametric estimators for production frontiers 
while satisfying theoretical axioms of production theory. Finally, Daouia 
et al. (2016) presented a constrained estimation method for support 
frontiers combining edge estimation and quadratic or cubic spline 
smoothing techniques.

From a stochastic point of view, several authors have introduced 
methods incorporating both inefficiency and statistical noise into fron
tier estimation. An early contribution in this direction is the stochastic 
DEA formulation by Banker (1988), who introduced a linear 
programming-based approach to estimate a frontier that accounts 
explicitly for statistical noise, positioning it within the data rather than 
strictly enveloping it. This model was further extended by Banker and 
Maindiratta (1992) into a semiparametric framework, incorporating 
maximum likelihood estimation and specific distributional assumptions 
about inefficiency and noise. More recently, Kuosmanen and Kortelai
nen (2012) introduced the Stochastic Non-Smooth Envelopment of Data 
(StoNED) method, which combines the nonparametric DEA approach 
with the SFA framework, aiming to estimate production frontiers while 
accounting for both inefficiency and statistical noise. Finally, Kuosma
nen et al. (2015) and Kuosmanen and Johnson (2017) developed a 
consistent nonparametric estimator of the Directional Distance Function 
(DDF) introduced by Chambers et al. (1998) using StoNED.

Additionally, the DEA community is increasingly exploring the 
relationship between efficiency analysis, production function estima
tion, and machine learning, particularly to address overfitting in tradi
tional methods by improving the estimation of the Data Generating 
Process. For instance, Olesen and Ruggiero (2018) introduced weighted 
random hinge functions with parameter constraints as an alternative to 
Afriat-Diewert-Parkan (ADP) estimators. Esteve et al. (2020) developed 
Efficiency Analysis Trees (EAT) to estimate frontiers in a FDH fashion, 
using a modified version of the Classification and Regression Trees al
gorithm (Breiman et al., 1984). Building on these ideas, Esteve et al. 
(2023) and Guillen et al. (2023) further improved the robustness of the 
EAT results by incorporating adaptations of the Random Forest meth
odology (Breiman, 2001) and Gradient Tree Boosting (Friedman, 2001), 
respectively. Valero-Carreras et al. (2021) adapted Support Vector 
Regression (SVR), originally introduced by Drucker et al. (1997), for 
production function estimation, with a natural extension for the multi- 
output case presented in Valero-Carreras et al. (2022). In the same 
line, Guerrero et al. (2022) further extended SVR to estimate production 
frontiers, effectively mitigating the typical overfitting problem. Olesen 

and Ruggiero (2022) introduced Hinging Hyperplanes (HH) function 
approximation (Breiman, 1993) as a flexible estimator of production 
functions. Finally, España et al. (2024) adapted the additive version of 
Multivariate Adaptive Regression Splines (MARS), introduced by 
Friedman (1991), to standard production contexts with a single output 
through piece-wise linear functions.

Our approach relies on an adaptation of the additive version of the 
Multivariate Adaptive Regression Splines (MARS) algorithm by Fried
man (1991). This technique is a powerful non-parametric method 
broadly used in supervised learning. MARS approximates a target 
function through an expansion of basis functions (BFs), which are 
mathematical transformation of variables (i.e., step functions, poly
nomials, splines, etc.). These BFs serve as the building blocks for 
approximating complex relationships and interactions between pre
dictors. The MARS algorithm constructs the approximation by itera
tively adding and removing BFs, which are defined as splines — 
piecewise linear functions that are connected at specific points called 
knots. These splines can be univariate or multivariate, depending on 
whether they involve one or multiple predictors. When MARS uses only 
univariate splines, it is referred to as an additive MARS model. The 
MARS technique faces the problem of optimal knot location using two 
main processes: forward selection and backward elimination. The for
ward selection creates a comprehensive set of BFs that may overfit the 
training data, while (afterwards) the backward elimination sequentially 
removes (unnecessary) BFs with minimal impact on the model’s per
formance. MARS avoids the problem of data overfitting in this way.

Despite relying on different modeling strategies, the approaches by 
Olesen and Ruggiero (2022), España et al. (2024), and our current 
extension all follow a similar underlying principle: they build flexible 
piecewise linear approximations through input space partitioning and 
the combination of elementary BFs. However, the scope of each 
approach—and the type of technologies they are best suited to estima
te—differs substantially. On the one hand, Olesen and Ruggiero (2022)
reinterpreted Breiman’s HH formulation as a nonparametric estimator 
of S-shaped production functions by assuming homotheticity. Their 
method uses fixed hinge locations and separates the estimation into a 
linear homogeneous core and a nonlinear scaling law, avoiding the need 
for Afriat-type inequalities (Afriat, 1972; Diewert and Parkan, 1983). On 
the other hand, España et al. (2024) proposed a constrained version of 
MARS which estimates concave production functions by selecting spline 
basis functions under shape constraints, through a fully data-driven 
forward–backward procedure. That work is now further extended to 
handle multi-output settings by constructing a DEA-type technology 
from refined predictions, enabling full compatibility with standard ef
ficiency measurement tools. In future research, a similar separation into 
a linear core and nonlinear scaling law—following the structure pro
posed by Olesen and Ruggiero—could also be explored within our 
framework, potentially broadening its applicability to S-shaped 
technologies.

We now present our methodological contribution, which builds upon 
and extends the additive MARS approach proposed by España et al. 
(2024). Specifically, our proposed framework provides three key 
methodological advancements that address limitations of the original 
method and extend its applicability to a broader set of problems.

First, we relax the conditions for satisfying monotonicity and con
cavity assumptions. In the original approach, these constraints were 
enforced additively, meaning that each univariate function within the 
estimator was independently required to comply with the shape re
strictions. In contrast, our new approach enforces these constraints 
dimensionally, applying them across the (dimensional) aggregated 
function rather than its individual components. This refinement elimi
nates the need for all component functions to be individually monotonic 
and concave, thereby providing greater flexibility in estimating the 
model’s coefficients.

Second, we address a key limitation of the original additive frame
work: its inability to model interactions between variables. By 
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introducing the capability to account for these interactions, our 
approach captures intricate, non-linear relationships present in the data, 
overcoming the restrictive linear structure of the original method. This 
improvement directly resolves one of the critical shortcomings identi
fied in the earlier work, where cross-variable effects were insufficiently 
represented. Together with the relaxation of monotonicity and concav
ity constraints described earlier, this advancement considerably en
hances the model’s ability to accurately estimate the underlying data 
structure and account for the complexities of real-worlds production 
processes.

Third, we expand upon the work of España et al. (2024) by extending 
their research on production functions (i.e., only one output was 
considered) to estimate multi-output, multi-input technologies. This 
extension is based on a novel procedure that unfolds in three main steps. 
First, we use a Machine Learning (ML) technique adapted to the context 
of efficiency analysis to approximate observed outputs to the data- 
generating process (DGP), ensuring that the observed sample is envel
oped from above. Second, a refinement phase is performed, where some 
of the initial estimates, particularly those deemed inaccurate, are 
replaced by their observed values. Third, a DEA-VRS (Variable Returns 
to Scale) technology is constructed by replacing the observed outputs 
with a new vector of outputs predicted by the ML algorithm. To achieve 
this, we introduce an extension of the algorithm originally proposed by 
España et al. (2024), which we name Adaptive Constrained Enveloping 
Splines (ACES) to distinguish it from its earlier version.

The paper’s structure is as follows. Section 2 provides the back
ground. In Section 3, we introduce the new technique called Adaptive 
Constrained Enveloping Splines (ACES), detailing its theoretical un
derpinnings and how it builds on previous methodologies. Section 4
describes how some well-known measures of technical efficiency can be 
implemented through ACES. Section 5 introduces the set of available 
hyperparameters and conducts computational experiments using simu
lated data to evaluate the performance of the new approach. Section 6
shows an empirical illustration. Finally, Section 7 concludes the paper.

2. Background

This section provides a brief overview of important concepts related 
to Data Envelopment Analysis and the application of Multivariate 
Adaptive Regression Splines for estimating production functions 
(España et al., 2024). Additionally, we will introduce some notation.

2.1. Data envelopment analysis

Let us consider a sample of n DMUs, whose technical efficiency needs 
to be evaluated. Specifically, each DMUi, i = 1,...,n, consumes xi =

(
xi1,

…, xij,…, xim
)
∈ Rm

+ inputs to produce yi =
(
yi1,…, yir,…, yis

)
∈ Rs

+ out
puts. To assess the (relative) efficiency of a DMU, a common technology 
set (φ), shared by all the DMUs within the sample, needs to be defined. 
From a broader viewpoint, the technology can be expressed as: 

φ =
{
(x, y) ∈ Rm+s

+ : x can produce y
}
. (1) 

This technology includes all (x, y) combinations that are technically 
feasible. In the non-parametric approach, this technology is axiomati
cally established, adhering to principles outlined by Banker et al. (1984). 
Precisely, it upholds the free disposability of inputs and outputs, 
meaning that if (x, y) ∈ φ, then (xʹ, yʹ) ∈ φ for xʹ⩾x and yʹ⩽y. It also 
guarantees the enveloping property, ensuring that (xi, yi) ∈ φ, ∀i = 1,...,
n. Convexity is also typically assumed, implying that if (x, y) ∈ φ and 
(xʹ, yʹ) ∈ φ, then λ(x,y) + (1 − λ)(xʹ, yʹ) ∈ φ, ∀λ ∈ [0,1]. Lastly, the 
technology meets minimal extrapolation, representing the smallest set 
satisfying prior axioms. This particular axiom is the cause of the over
fitting problem by closely approximating the technology’s boundary to 
the observed units (see, e.g., Esteve et al., 2020).

In the realm of Data Envelopment Analysis (DEA), Banker et al. 

(1984) proposed an estimation of the technology with variable returns 
to scale as: 

φ̂DEA =

{

(x, y) ∈ Rm+s
+ : xj⩾

∑n

i=1
λixij, j = 1,…,m, yr⩽

∑n

i=1
λiyir, r

= 1,…, s,
∑n

i=1
λi = 1, λi⩾0, i = 1,…, n

}

. (2) 

Regarding the measurement of technical efficiency, the DMU being 
evaluated should be projected onto a certain part of the border of the 
technology. This part of the technology is called the efficient frontier or 
production frontier of φ, which is defined as: 

∂(φ) = {(x, y) ∈ φ : x̂ < x, ŷ > y⇒(x̂, ŷ) ∕∈ φ }. (3) 

In DEA, the estimation of the technology and the measurement of 
technical efficiency are achieved in a single step through a linear pro
gramming (LP) model. Typical measures for determining technical ef
ficiency include the input-oriented and output-oriented radial measures 
(Banker et al., 1984), the input-oriented and output-oriented non-radial 
Russell measures (Färe and Lovell, 1978; Färe et al., 1985), the Direc
tional Distance Function (Chambers et al., 1998) or the additive models 
such as the Measure of Inefficiency Proportions (Cooper et al., 1999), the 
Range Adjusted Measure (Cooper et al., 1999), the Bounded Adjusted 
Measure (Cooper et al., 2011) or the Normalized Weighted Additive 
Model (Lovell and Pastor, 1995).

Finally, we present a graphical example to illustrate the overfitting 
problem inherent in DEA. In Fig. 1, we display a sample of DMUs for 
efficiency evaluation using a DEA-VRS frontier. Simultaneously, we 
observe the underlying DGP, which measures the maximum output (y)
achievable based on a given resource profile (x). It is interesting to note 
that DEA yields overoptimistic efficiency scores, potentially skewing 
efficiency assessments. We delve into the specific case of units A and B 
within this analysis. While DMU A is considered efficient, DMU B re
quires a slight increase in the level of the output produced, while 
maintaining a constant input level to achieve efficiency.1 Nevertheless, 
both DMUs are significantly distant from the theoretical levels of effi
ciency, demonstrating the fact that DEA is solely based on sample-level 
assessments.

2.2. Multivariate Adaptive Regression splines for the estimation of 
production functions

In this section, we briefly introduce the main notion associated with 
the model by España et al. (2024) to estimate single-output multi-input 

Fig. 1. An example of overoptimistic DEA scores.

1 Under the output-oriented radial measure approach (Banker et al., 1984).
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production contexts, that is, a production function. Estimating produc
tion functions can be considered a shape-restricted regression problem 
that focuses on unveiling the relationship between a single-output y and 
a set of inputs xj, j = 1, ...,m, at its extreme level. In the deterministic 
setting, the data-generating system is presumed to be described by the 
following expression: 

y = f(x1, ..., xm) − υ. (4) 

Here, the first term f(x1, ..., xm) represents the joint predictive rela
tionship between the output y and the set of inputs x = (x1, ..., xm), 
while the term υ⩾0 assesses the level of technical inefficiency, with υ = 0 
indicating technical efficiency.

España et al. (2024) extended the additive version of the Multivar
iate Adaptive Regression Splines (MARS) algorithm (Friedman, 1991) by 
incorporating shape constraints to approximate y under a deterministic 
framework. This modified approach estimates a surface that envelops 
the data from above while ensuring non-decreasing monotonicity and 
concavity. The additive version of MARS is constructed through the 
linear combination of a set of basis functions (BFs). The set of BFs are 
created from an exhaustive search of knot locations by recursive parti
tioning of the input space. Friedman (1991) proposes the implementa
tion of a strategy based on selecting two-sided truncated univariate 
splines of degree 1 as BFs: 

B+(x) =
(
xj − k

)

+
= max

(
0, xj − k

)

B− (x) =
(
k − xj

)

+
= max

(
0, k − xj

)
.

(5) 

A reflected pair consists of two BFs that share a common knot loca
tion (k): a right-side spline that captures the relationship between the 
predictor xj and the response variable to the right side of the knot, and a 
left-side spline that does so to the left side of the knot. When a (sibling) 
spline is removed from a reflected pair, we refer to it as an unpaired BF. 
This terminology allows us to distinguish between splines that remain 
part of a reflected pair and those that become unpaired during the 
model-fitting process.

The MARS algorithm involves two stepwise procedures: a forward 
selection and a backward elimination. In the forward selection step, the 
input space is divided into subspaces by searching for knots along the 
range of inputs. These knots are used to create a set of BFs through 
splines, which transform the original inputs into additional data. At each 
forward step, the reflected pair that minimizes the training error the 
most, is added as a new term in the model. The set of BFs for creating 

reflected pairs during the forward step is the following: 

ℵ =
{{(

xj − k
)

+
,
(
k − xj

)

+

}⃒
⃒k ∈

{
x1j, x2j, ..., xnj

}
, j = 1, ...,m

}
. (6) 

This step continues until the desired number of BFs (univariate 
splines) predefined by the user is reached or when further error reduc
tion is not significant. The backward elimination algorithm is then 
applied, sequentially removing less significant model terms. By 
combining these stepwise procedures, the MARS model achieves an 

effective balance between model complexity and predictive 
performance.

The new additive MARS approximation function within the pro
duction framework is formulated as: 

f̂ (x) = τ0 +
∑m

j=1

∑

p∈Pj

[

γ+jp

(

xj − κ̃jp

)

+

+ γ−jp

(

κ̃jp − xj

)

+

]

+
∑m

j=1

∑

v∈Vj

[

ωjv

(

κ̃(L)jv − xj

)

+

]

, (7) 

where xj is the j− th input, j = 1,...,m, τ0 is the intercept term, γ+jp 
and γ−jp 

are the coefficients associated with the p− th reflected pair for the j− th 
input and ̃κjp ∈

{
x1j, x2j, ..., xnj

}
is the knot location that defines the p− th 

reflected pair for the j− th input. Furthermore, P =
{
Pj
}m

j=1 is a set of m 
elements, where Pj is the subset of indexes that enumerate the reflected 
pairs built through the j− th input. Then, γ+j , γ−j and ̃κj, j = 1,...,m, are the 
j− th subset of γ+, γ− and ̃κ, respectively. While the first two subsets hold 
the coefficients, the latter subset is made up of the knot locations in the 
input space for the reflected pairs. In the same way, we can define V, ω 
and κ̃(L) for the left-side unpaired BFs. Finally, we define the set of 

selected BFs as B =

{

1,

(

xj − κ̃jp

)

+

,

(

κ̃jp − xj

)

+

,

(

κ̃(L)jv − xj

)

+

}

, j = 1,

...,m, ∀p ∈ Pj, ∀v ∈ Vj. Notice that during the forward algorithm, all the 
BF are paired, resulting in V = ∅.

The algorithm starts by incorporating the constant function B1(x) =
1 (τ0) into the model to establish the initial region over the entire 
domain. Next, a new reflected pair from (6) is selected to be incorpo
rated into the model as: 

f̂ (x) = τ0 + γ+j1

(

xj − κ̃j1

)

+

+ γ−j1

(

κ̃j1 − xj

)

+

. (8) 

The fitting process involves generating a model for each possible 
(and available) combination of variable xj and knot location ̃κj

|Pj|+1
= xij 

(an observed value), where 
⃒
⃒Pj
⃒
⃒ denotes the cardinality of Pj. This pro

cedure is computationally expensive, as nearly n⋅m models are fitted in 
each iteration.2 From each of those models, a set of coefficients is esti
mated via the following LP model:  

In model (9), εi measures the error term defined by constraint (9.1). 
Note that this variable must be restricted to be positive to envelop the 

minimize
ε,τ0 ,γ+ ,γ−

∑n

i=1
εi

subject to

τ0 +
∑m

j=1

∑

p∈Pj

[

γ+jp

(

xij − κ̃jp

)

+

+ γ−jp

(

κ̃jp − xij

)

+

]

− εi = yi, ∀i, (9.1)

εi ⩾ 0, ∀i, (9.2)

− γ+jp − γ−jp ⩾ 0, ∀j,∀p ∈ Pj, (9.3)

γ+jp ⩾ 0, ∀j,∀p ∈ Pj, (9.4)

− γ−jp ⩾ 0, ∀j,∀p ∈ Pj. (9.5)

(9) 

2 Friedman (1991) and Zhang (1994) introduced methods to preserve spacing 
between successive knots, aiming to reduce overfitting while also lowering 
computational cost by limiting the number of fitted models.
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observed data, as indicated by constraint (9.2). Constraint (9.3) ensures 
concavity, while constraints (9.4) and (9.5) guarantee the non- 
decreasing monotonicity of the estimator. Then, the reflected pair 
from (6) that yields the greatest reduction in a certain lack-of-fit (LOF) 
criterion when solving (9), is introduced in the model. Typically, the 
mean residual sum of squares is chosen as a LOF measure: 

LOF =
1
n
∑n

i=1
(yi − f̂ (xi) )

2
. (10) 

In this way, equation (8) expands iteratively until a stopping crite
rion holds: first, when the maximum number of BFs (η) has been 
reached, and second, when the reduction in training error becomes 
insignificant, as determined by a user-defined ratio (ξ) . Like DEA, the 
model associated with the forward step still exhibits overfitting. At this 
stage, the accuracy is relatively high due to the close approximation to 
the data sample by the piece-wise linear estimator, resulting in low bias. 
However, this estimator relies heavily on the training data, leading to 
high variance and makes the achievement of a good generalization 
performance somewhat challenging. To tackle this issue, a backward 
algorithm based on the generalized cross-validation (GCV) metric, 
initially proposed by Golub et al. (1979), is employed: 

GCV(B) =
1
n
∑n

i=1[yi − f̂ B(xi) ]
2

[

1 −
C(B)+d⋅χ

n

]2 , (11) 

In this context, C(B) represents the number of parameters to be 
estimated in f̂ B, where f̂ B is a model built from a specific set of BFs (B). 
The hyperparameter d penalizes model complexity. Finally, χ is the 
number of additional BF parameters being fit to the data in f̂ B. In the 
new ACES algorithm, χ represents the number of knots being placed to 
establish the set of BFs. It should be noted that removing a BF from a 
reflected pair reduces C(B) by one unit since there is one less parameter 
to be fitted, but it does not affect χ.

The backward algorithm shown in España et al. (2024) follows the 
procedure outlined in Friedman (1991). The key difference between 
both approaches lies in the selection procedure for removing a BF. In 
contrast to standard (additive) MARS, where any BF is candidate for 
elimination, the approached described in España et al. (2024) introduces 
two conditions that must be considered before selecting a BF for 
removal: 

1. Right-side BFs can only be removed from reflected pairs.
2. Left-side BFs can only be removed when appearing unpaired.

Then, the LP model to be solved at each stage of the backward al
gorithm is as follows:  

Model (12) introduces only one additional constraint, (12.6), 
compared to the forward model (9), ensuring that the unpaired BFs on 
the left side also adheres to monotonicity and concavity properties. 
Hence, the backward algorithm creates a set of |B| − 1 sub-models by 
removing BFs one by one and selects the model that minimizes (11).

3. Adaptive Constrained Enveloping splines

This section details the enhancements made to the additive MARS 
model introduced by España et al. (2024). First, we outline the modi
fications implemented to improve the model fit, including (i) the 
introduction of a relaxed optimization problem for coefficient estima
tion and (ii) the incorporation of variable interactions in the modeling 
process. Second, we describe how the model has been adapted for esti
mating production frontiers, which involve the analysis of multi-output 
multi-input production contexts.

3.1. A new and more relaxed approach

The additive MARS model adapted to the estimation of production 
functions presented in España et al. (2024) is based on the idea that the 
sum of non-decreasing monotonic and concave functions results in a 
function that is both non-decreasing monotonic and concave. Specif
ically, each reflected pair and unpaired left-side BF in (7) are forced to be 
non-decreasing monotonic and concave. However, it is worth noting 
that these constraints may be overly stringent.

We propose the following reformulation of (7), where the additive 
MARS model is expressed as a sum of (paired and unpaired) right-side 
and left-side BFs: 

f̂
ACES

(x) = τ0 +
∑m

j=1

∑

h∈Hj

[
αjh

(
xj − κ(R)jh

)

+

]
+
∑m

j=1

∑

u∈Uj

[
βju

(
κ(L)ju − xj

)

+

]
.

(13) 

Here, xj is the j− th input, j = 1,...,m, τ0 is the intercept term, αjh is the 
coefficient associated with the h− th right-side BF for the j− th input and 
κ(R)jh ∈

{
x1j, x2j, ..., xnj

}
is the knot location that defines the h− th right-side 

BF for the j− th input. In addition to that, H =
{
Hj
}m

j=1 is a set of m ele
ments, where Hj is the subset of indexes that enumerate the right-side 
BFs built through the j− th input. The standard format for BF enumera
tion is to list the paired BFs first, followed by the unpaired BFs (first 
right, then left). Besides, αj and κ(R)j , j = 1, ...,m, are the j− th subset of α 
and κ(R), respectively. In the same way, we can define U, β and κ(L) for the 
left-side BFs. Within each type of BF, the order of enumeration is 
determined by the value of the knot location, from lowest to highest. 

Finally, remember that 
(

xj − κ(R)
jh

)

+
and 

(
κ(L)ju − xj

)

+
form a reflected 

pair if ∃h ∈ Hj, u ∈ Uj such that κ(R)jh = κ(L)ju . In particular, during the 

minimize
ε,τ0 ,γ+ ,γ− ,ω

∑n

i=1
εi

subject to

τ0 +
∑m

j=1

∑

p∈Pj

[

γ+jp

(

xij − κ̃jp

)

+

+ γ−jp

(

κ̃jp − xij

)

+

]

+
∑m

j=1

∑

v∈Vj

[

ωjv

(

κ̃(L)jv − xij

)

+

]

− εi = yi, ∀i, (12.1)

εi ⩾ 0, ∀i, (12.2)

− γ+jp − γ−jp ⩾ 0, ∀j,∀p ∈ Pj, (12.3)

γ+jp ⩾ 0, ∀j,∀p ∈ Pj, (12.4)

− γ−jp ⩾ 0, ∀j,∀p ∈ Pj, (12.5)

− ωjv ⩾ 0, ∀j,∀v ∈ Vj. (12.6)

(12) 
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forward algorithm, only reflected pairs are formed implying that κ(R)jh =

κ(L)ju , h = u,∀h ∈ Hj, ∀u ∈ Uj.
Next, the set of knots selected by the left-side BFs for the j− th input is 

specified as κ(L)*j = κ(L)j such that κ(L)ju ∈ κ(L)j , ∀u ∈ Uj. Besides, the set of 
selected knots associated with the right-side BFs for the j− th input is 
determined, excluding the knots already used by the left-side BFs, as 

κ(R)*j = κ(R)j \
(

κ(R)j ∩ κ(L)j

)
such that κ(R)jh ∈ κ(R)j , ∀h ∈ Hj. This omission of 

knots is necessary to avoid repeated values when the BFs form a re
flected pair. Thus, the set of knots selected at any step of the algorithm is 
established as follows: 

K =
{

Kj : κ(R)*j ∪ κ(L)*j

}m

j=1
= {K1, ...,Km}

=
{{

k11 , ..., k1|K1 |

}
, ...,

{
k1m , ..., k1|Km |

}}
, kj1 < ... < kj

|Kj|
. (14) 

As an additional step, each set Kj is expanded by including both the 
minimum and maximum observed values of the variable xj, with the 
goal of creating a collection of intervals 

[
kjt− 1 , kjt

)
, t = 1, ...,

⃒
⃒Kj
⃒
⃒ + 1: 

K* =

{

kj0 ∪ Kj ∪ kj
|Kj|+1

}m

j=1
, kj0 = min

1⩽i⩽n

(
xij
)
, kj

|Kj|+1
= max

1⩽i⩽n

(
xij
)
. (15) 

Under this new approach, our objective is to guarantee non- 
decreasing monotonicity and concavity within each interval 

[
kjt− 1 , kjt

)
. 

To achieve this, we use the closed-form expression of the first-order 
partial derivatives determined from expression (13) to establish esti
mation conditions on the coefficients that satisfy the shape requirements 
of the estimator. The idea is to gather all BFs that involve identical in
puts, as expressed below: 

f̂
ACES

(x) = τ0 +
∑m

j=1
f̂

ACES
j (x)

= τ0 +
∑m

j=1

⎛

⎝
∑

h∈Hj

[
αjh

(
xj − κ(R)jh

)

+

]
+
∑

u∈Uj

[
βju

(
κ(L)

ju − xj

)

+

]
⎞

⎠.

(16) 

Hence, the j− th first-order partial derivative of ̂f
ACES

(x) is defined as 
a piece-wise function: 

∂ f̂
ACES

(x)
∂xj

=
∑

h∈Hj

αjh ⋅I
(

xj > κ(R)jh

)
−
∑

u∈Uj

βju ⋅I
(

xj < κ(L)ju

)
, (17) 

where I(.) is an indicator function that takes the value of 1 when its 
condition is met and 0 otherwise. These indicator functions determine 
the regions in the input space where a BF associated with some coeffi

cient αjh or βju 
is activated. Specifically, 

(
xj − κ(R)jh

)

+
is activated in all 

intervals to the right-side of the knot κ(R)jh , while 
(

κ(L)ju − xj

)

+
is activated 

in all intervals to the left-side of the knot κ(L)ju . In view of this, we can 

define the j− th partial derivative of f̂
ACES

(x) for the t− th interval 
[
kjt− 1 ,

kjt
)

as: 

∂ f̂
ACES

(x)
∂xj

⃒
⃒
⃒
⃒
⃒
t

=
∑

h∈Hj

αjh ⋅I
(

kj0 ⩽κ(R)jh < kjt

)
−
∑

u∈Uj

βju ⋅I
(

kjt− 1 < κ(L)ju ⩽kj
|Kj|+1

)

, t

= 1, ...,
⃒
⃒Kj
⃒
⃒+1.

(18) 

From this point onwards, we proceed to define the conditions 
required for ensuring both non-decreasing monotonicity and concavity 
properties of our estimator. Non-decreasing monotonicity is achieved by 
imposing that the estimated function increases in each interval 
[
kjt− 1 , kjt

)
: 

∂ f̂
ACES

(x)
∂xj

⃒
⃒
⃒
⃒
⃒
t

⩾0, j = 1, ...,m, t = 1, ...,
⃒
⃒Kj
⃒
⃒+1, (19) 

while concavity is guaranteed by imposing that the rate of growth de
creases between two consecutive intervals 

( [
kjt− 1 , kjt

)
,
[
kjt , kjt+1

) )
: 

∂ f̂
ACES

(x)
∂xj

⃒
⃒
⃒
⃒
⃒
t

⩾
∂f̂

ACES
(x)

∂xj

⃒
⃒
⃒
⃒
⃒
t+1

, j = 1, ...,m, t = 1, ...,
⃒
⃒Kj
⃒
⃒+ 1, (20) 

which is equivalent to: 

−
∑

h∈Hj

αjh ⋅I
(

kjt ⩽κ(R)jh < kjt+1

)
+
∑

u∈Uj

βju ⋅I
(

kjt− 1 < κ(L)
ju ⩽kjt

)
⩾0, j = 1, ...,m, t

= 1, ...,
⃒
⃒Kj
⃒
⃒.

(21) 

With this approach, the shape constraints are satisfied for each 

dimension individually, meaning that each f̂
ACES
j (x) in (16) is a non- 

decreasing monotonic and concave function. This contrasts with the 
methodology introduced by España et al. (2024) where each reflected 
pair or left-side unpaired BF in (7) had to meet shape constraints. Then, 
the LP model for estimating the set of coefficients under this new 
approach is as follows:  

In model (22), 1
ϕi 

is included to weigh errors, where ϕi is the score of 
the i− th DMU obtained by the radial model under output orientation 
(Banker et al., 1984). This gives higher importance to errors near the 
frontier. Moreover, the relaxation of the problem also has an impact on 

minimize
ε,τ0 ,α,β

∑n

i=1

1
ϕi

⋅εi

subject to

τ0 +
∑m

j=1

∑

h∈Hj

[
αjh

(
xij − κ(R)jh

)

+

]
+
∑m

j=1

∑

u∈Uj

[
βju

(
κ(L)

ju − xij

)

+

]
− εi = yi, ∀i, (22.1)

εi ⩾ 0, ∀i, (22.2)
∑

h∈Hj
αjh ⋅I

(
kj0 ⩽κ(R)jh < kjt

)
−
∑

u∈Uj
βju ⋅I

(

kjt− 1 < κ(L)ju ⩽kj
|Kj|+1

)

⩾ 0, ∀j, t = 1, ...,
⃒
⃒Kj
⃒
⃒+ 1, (22.3)

−
∑

h∈Hj
αjh ⋅I

(
kjt ⩽κ(R)jh < kjt+1

)
+
∑

u∈Uj
βju ⋅I

(
kjt− 1 < κ(L)ju ⩽kjt

)
⩾ 0, ∀j, t = 1, ...,

⃒
⃒Kj
⃒
⃒. (22.4)

(22) 
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the backward algorithm. Unlike the approach by España et al. (2024), 
which requires a careful selection of candidate BFs for removal at each 
iteration, the current approach allows any BF to be considered for 
elimination as long as (22) remains feasible.

Next, we provide an example to illustrate the aforementioned con
cepts using the following ACES model: 

f̂
ACES

(x) = 5.4+ α11 ⋅(x1 − 9.27)+ + β11
⋅(9.27 − x1)+ + α12 ⋅(x1 − 6.14)+

+ β12
⋅(2.83 − x1)+,

(23) 

where α11 = 0.134, β11
= − 0.192, α12 = − 0.055 and β12

= − 0.417.
Fig. 2 represents the partition of the input space into a collection of 

disjoint intervals derived from the ACES model defined in (23). The 
selected intervals arise naturally from the knot locations, which are 
determined by the optimization process in the ACES model. These knots 
are introduced where the data shows significant shifts in behavior, 
allowing the model to capture local variations and minimize error 
within each subregion. Specifically, the following intervals can be 
defined: [1.01,2.83), [2.83, 6.14), [6.14, 9.27) and [9.27,9.98). More

over, ∂̂f
ACES

(x)
∂x1

⃒
⃒
⃒
⃒
⃒
t 

is formulated as the sum of the coefficients activated in 

each interval: 0.609 in x1 ∈ [1.01,2.83) , 0.192 in x1 ∈ [2.83,6.14) , 
0.137 in x1 ∈ [6.14,9.27) and 0.079 in x1 ∈ [9.27,9.98) . It can be 
observed that the first derivative takes a positive value in each interval 
and decreases as we move dimensionally to the right intervals. Finally, 
in terms of expression (15), the set of selected knots (including the 
minimum and the maximum data value) is K* =

{1.01, 2.83,6.14, 9.27, 9.98}.

3.2. A model with interaction of variables

The prior version of ACES (Section 3.1) is a purely additive model, 
which may limit its performance when dealing with production func
tions involving interactions among input variables. Although its additive 
nature could initially be seen as a limitation, España et al. (2024)

demonstrated through simulations from Kuosmanen and Johnson 
(2010) that the new method can outperform DEA and C2NLS even in 
non-additive cases. However, the success of this approach depends on 
the predominance of variable interactions and the extent of non- 
additivity in the true production function. Specifically, España et al. 
(2024) highlight a threshold around 0.5 as the maximum interaction 
between variable for which the technique proposed continues to provide 
good results. Beyond this threshold, performance declines sharply, 
regardless of the sample size.

The standard MARS approach incorporates multivariate BFs of q− th 
degree. These high-order degree BFs are formed by taking the product of 
a new 1-degree (univariate) spline as in (5) and a previously entered 
(univariate or multivariate) BF. Some considerations must be made. 
Firstly, each factor in the multivariate BF must involve a different pre
dictor variable to avoid high-power dependencies sensitive to extreme 
values. Secondly, a hierarchical structure prevails, as a q− th degree BF 
cannot be introduced in the model until a (q − 1)− th degree BF is 
included. Lastly, these BFs act locally within the region of the input 
space where all the splines that comprise the multivariate BF are acti
vated. As an example, consider the following 3-degree BF 
(x1 − 5)+⋅(x3 − 9)+⋅(7 − x2)+. This BF incorporates interactions be
tween three predictor variables. The terms (x1 − 5)+, (x3 − 9)+ and 
(7 − x2)+ are the univariate splines associated with each predictor 
variable, and their product builds the multivariate BFs. Unfortunately, 
the product of a non-decreasing monotonic and concave function is not 
necessarily a non-decreasing monotonic and concave function. Then, as 
far as we are concerned, this strategy cannot be applied in our context 
due to the inability to impose the required shape constraints in these 
types of surfaces. In this regard, Shih et al. (2006) and Martinez et al. 
(2015) introduced two alternative convex (but non-monotonic) versions 
of MARS that allowed convex multivariate BFs.

To overcome the aforementioned limitations, we propose a simple 
yet effective procedure for incorporating variable interactions. We 
introduce a new hyperparameter, denoted as qmax, that determines the 
maximum number of inputs that can interact to create a BF. Then, let 
M = {1, ...,m} be the set of available inputs, and let S =

Fig. 2. Example of the partitioning of the input space for an ACES model.

V.J. España et al.                                                                                                                                                                                                                               Computers and Operations Research 184 (2025) 107242 

7 



{Mʹ ⊆ M : 2 < |Mʹ|⩽q⩽m }, Sg ∈ S, g = 1, ...,J, J =
∑qmax

a=2 Ca
m =

(
2
m

)

+ ..

.+

(
q
m

)

be the set of all possible interactions between the original 

inputs with a maximum degree qmax. In this way, we can define J new 
additional variables as: 

zg =
∏

j∈Sg

xj, g = 1, ..., J. (24) 

Then, let x1, ..., xm be the set of original input in Rm and let z1, ..., zJ be 
the set of interaction variables in RJ we can define the following trans
formation ϑ : Rm→Rm+J on the form: 

ϑ(x1, ..., xm) = (x1, ..., xm, z1, ..., zJ), (25) 

where each zg is defined as the product of a subset of the original input 
variables xj, with the subset containing at most qmax variables.

The introduction of this new set of artificial variables enables the 
modeling of interaction between variables while imposing necessary 
shape constraints, since these new variables are treated like the original 
inputs. Similar to the original MARS approach, interactions involving a 
variable with itself are avoided. On the other hand, these BFs will act 
locally but as a univariate BF, i.e., it will be activated on one side of the 
knot and deactivated on the other side. Additionally, while the hierar
chical sense of interaction is not incorporated in exactly the same way as 
Friedman’s method, the ACES algorithm does prioritize the inclusion of 
1-degree BFs over higher degree BFs, following the approach shown in 
Tsai and Chen (2005). In this regard, we introduce a new hyper
parameter ξ(q), q = 2, ..., qmax, which determines the minimum per
centage of improvement with respect to the best 1-degree BF required 
for the incorporation of a q− degree BF into the model. This ensures that 
only significantly beneficial higher-degree BFs are incorporated into the 
model.

Based on the outlined procedure, the dimension of the input space 
increases from m to m + J. Shape constraints are imposed in the new 
space of inputs, and, in consequence, the properties of non-decreasing 
monotonicity and concavity may not necessarily hold in the original 
space. Therefore, in a final step, a standard DEA-VRS technology is 
constructed using the new predicted output vector and the originally 
observed input vectors. In this way, the estimated frontier integrates 
information about variable interactions in the prediction of the optimal 
output, while satisfying all the original axioms in the m dimensional 
space.

3.3. A procedure for estimating a DEA-type technology using Adaptive 
Constrained Enveloping splines

In this section, we extend the previously described methodology, 
which estimates production functions under shape constraints like 
concavity and monotonicity, to accommodate a multi-output production 
framework. This extension defines an estimator for the production 
technology using a piecewise linear frontier, offering an alternative to 
traditional DEA in scenarios with multiple inputs and outputs, which are 
very usual in practice.

Consider a set of n DMUs, where each unit i is characterized by an 
observed input–output pair 

(
xi, yi

)
randomly drawn from a true popu

lation. Our approach aims to identify optimal input–output combina
tions 

(
x*

i , y*
i
)
, i = 1, ...,n, which define the true efficient frontier within 

the production space. This is carried out in a 3-stage procedure.
In the first stage, the objective is to estimate the optimal outputs 

(
y*

i
)

by determining approximations 
(
ŷi
)

that better reflect the true pro
duction capabilities of each DMU. This stage operates under the 
assumption that the observed inputs are optimal, i.e., xi = x*

i , indicating 
that there is no inefficiency or random error in input measurements. This 
step generates a new dataset 

{(
x*

i , ŷi
) }n

i=1, representing a projection of 
the observed data close to the true efficient frontier and better align with 
the underlying production process.

In the second stage of the method, we address potential over
estimations in the predicted output values. Specifically, if any compo
nent of the estimated output vector is suspected to be overestimated, i.e., 
ŷij > y*

ij for some j, it can be corrected by replacing ŷij with the corre
sponding observed value yij. This conservative approach is proposed 
because is sufficient to project a few units to the true frontier to achieve 
a good characterization of the technology. Additionally, any estimate 
that falls between the observed value yij and the true (but unknown) 
optimal value y*

ij improve the DEA’s performance under no random 
error. However, an overestimation of ŷij beyond y*

ij could degrade the 
accuracy of the method. Therefore, correcting overestimations by 
retaining the observed values maintain the reliability of the resulting 
technology.

As a final step in the methodology, we construct a standard DEA-VRS 
technology using the refined version of 

{(
x*

i , ŷi
) }n

i=1. This stage offers 
two significant advantages. First, it provides the flexibility to relax 
monotonicity and concavity constraints during the initial stage if 
needed. It is important to note that the first step is primarily focused on 
adjusting the observed data to better align with the true underlying 
production technology, rather than directly estimating it. By initially 
relaxing these constraints, the model can capture data complexities 
more effectively in some scenarios, while in others, maintaining the 
constraints may yield more accurate results. However, even if all the 
form constraints were imposed in the first stage, the correction phase 
could break with the proper form of the technology. For these reasons, 
constraints are rigorously re-imposed in the final step when constructing 
the DEA-VRS technology, ensuring that the final estimated technology 
satisfies all necessary shape restrictions. Thus, the first two stages 
effectively “pushes” the observed data toward the true DGP ensuring 
yi⩽ŷi, ∀i = 1, ..., n, with the full enforcement of form constraints 
occurring in this last step. Finally, the second advantage lies in that, 
resorting to the DEA-VRS technology, it is easy to measure technical 
inefficiency through any measure previously established within the 
standard DEA framework (see Section 4).

We begin by adapting the iterative procedure from the original 
single-output to a multi-output context. While the formal application of 
MARS for estimating multiple response variables is limited, Milborrow 
(2014) describes a method for handling multiple outputs within a 
standard MARS model, which is implemented in the R earth package 
(Milborrow, 2023). In this approach, while the same set of BFs is applied 
across all models, the coefficients differ for each response variable. Next, 
during the backward algorithm, the usual procedure is followed, but 
with the minimization of the overall GCV score across all response 
variables.

The first two phases of this method are detailed below, while the 
final phase is discussed in Section 4. To extend model (22) to the multi- 
output context, we need to consider all outputs simultaneously. This 
optimization imposes shape constraints like concavity and monotonicity 
while minimizing deviations from observed data. The result is a piece
wise linear frontier that accurately captures the underlying production 
technology. The following LP model is used to produce an estimator that 
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preserves the essential properties of production technologies while 
mitigating overfitting:  

The following discussion addresses key aspects of model (26). The 
shape constraints — monotonicity and concavity — are efficiently 
managed through constraints (26.3) and (26.4). While the grid of knots 
in the input space is shared across all outputs, the coefficients are esti
mated separately for each output. Alternatively, it is possible to estimate 
each output individually by applying model (22) independently, 
focusing on a dataset comprising all inputs and a single output. How
ever, this separate estimation approach would imply not being able to 
determine a common set of knots as well as an increased computational 
burden on the process.

To continue, we define the estimation of the r− th output using the 
following expression: 

f̂
ACES(r)

(x) = τ(r)0 +
∑m

j=1

∑

h∈Hj

[
α(r)

jh

(
xij − κ(R)jh

)

+

]
+
∑m

j=1

∑

u∈Uj

[
β(r)

ju

(
κ(L)

ju − xij

)

+

]
,

(27) 

where, using our vector notation, we have f̂
ACES

(x) =
(

f̂
ACES(1)

(x), ..., f̂
ACES(s)

(x)
)

. It is important to note that constraints 

(28.3) and (28.4) guarantee monotonicity and concavity for each 

function f̂
ACES(r)

(x), r = 1, ..., s. This implies that applying or omitting 

these constraints will result in each f̂
ACES(r)

(x) being non-decreasing, 
concave, both, or neither, thereby effectively enveloping the observed 
data by constraints (28.1) and (28.2). Additionally, this approach is 
flexible enough to allow different shape constraints to be applied to each 
output r.

Model (26) is separable, meaning that given a common set of BFs, the 
coefficients α and β for each output are estimated independently. 
Consequently, the overall error is minimized by addressing each out
put’s error separately. However, this separability can lead to certain 
issues. To illustrate this situation, consider a dataset of 50 DMUs, each 
characterized by two inputs (x1, x2) and two outputs (y1, y2), generated 

according to the methodology outlined by Perelman and Santín (2009)
that meets usual microeconomic postulates. Additionally, the maximum 

output producible for a given set of inputs is denoted as 
(
y*

1, y*
2
)
. Data are 

generated without random error. Subsequently, we estimate these 
optimal outputs, yielding (ŷ1, ŷ2). To further evaluate the method, three 
additional columns are included in the table below, representing the 
output-oriented radial score calculated by standard DEA, as defined by 
Banker et al. (1984). Specifically, ϕ(r) is the output-oriented radial score 
utilizing all inputs and only the r− th output, while ϕ is the output- 
oriented radial score utilizing all the available variables. The 
following table presents data for four representative units, highlighting 
the performance of our approach:

Table 1 revels that for the resource levels of x1 = 39.96 and x2 =

15.47, unit 4 needs to produce y*
1 = 189.98 and y*

2 = 539.29 to achieve 
technical efficiency. Similarly, unit 23, with resources x1 = 38.30 and 
x2 = 14.85, should aim to produce y*

1 = 563.14 and y*
2 = 240.27. In 

these cases, production should be mainly concentrated in y2 or y1, 
respectively. Conversely, for resource levels presented in units 22 and 
49, the optimal production levels are similar for both outputs. Addi
tionally, we can evaluate each unit’s relative position with respect to 
single-output and multi-output analyses by using the scores ϕ(1), ϕ(2) and 
ϕ. For example, units 22 and 49 have similar positions relative to the 
frontier in both single-output and multi-output contexts. However, unit 
4 is significantly farther from the frontier when only output y1 is 
considered compared to when both outputs are accounted for. A similar 
situation occurs for output y2 and unit 23. The ACES model estimates 
(ŷ1, ŷ2) were generated using model (26), incorporating monotonicity 
(26.3) and concavity (26.4) constraints. The results show that prediction 
for both outputs are similar across all four units, exhibiting poor per
formance in estimating y*

1 for unit 4 and y*
2 for unit 23. Precisely, these 

units exhibit greater discrepancies when comparing single-output and 
multi-output analyses. This situation underscores the importance of the 
refinement step, where replacing the predicted values with observed 
values could significantly enhance the technique’s performance.

When applying an ACES model in a multi-output context, the 
model’s accuracy is highly dependent on its ability to predict each 
output variable effectively. Poor predictions, even for a single output, 
can significantly distort the overall efficiency assessment of DMUs. In 

Table 1 
Illustrative example of the performance of our methodology for four selected units.

Index x1 x2 y1 y2 y*
1 y*

2 ŷ1 ŷ2 ϕ(1) ϕ(2) ϕ

4 39.96 15.47 161.77 459.22 189.98 539.29 600.71 572.42 3.59 1.03 1.03
22 32.34 40.57 667.48 811.30 675.93 821.57 765.65 880.22 1.15 1.00 1.00
23 38.30 14.85 446.22 190.38 563.14 240.27 558.46 529.54 1.22 2.36 1.22
49 17.41 12.26 143.98 173.14 233.85 281.22 255.62 222.19 1.97 1.72 1.42

minimize
ε(r) ,τ(r)0 ,α(r) ,β(r)

∑s

r=1

∑n

i=1

1
ϕi

⋅εir

subject to

τ(r)0 +
∑m

j=1

∑

h∈Hj

[
α(r)

jh

(
xij − κ(R)

jh

)

+

]
+
∑m

j=1

∑

u∈Uj

[
β(r)

ju

(
κ(L)ju − xij

)

+

]
− εir = yir, ∀r, ∀i, (26.1)

εir ⩾ 0, ∀r, ∀i, (26.2)
∑

h∈Hj
α(r)

jh ⋅I
(

kj0 ⩽κ(R)jh < kjt

)
−
∑

u∈Uj
β(r)

ju ⋅I
(

kjt− 1 < κ(L)ju ⩽kj
|Kj|+1

)

⩾ 0, ∀r, ∀j, t = 1, ...,
⃒
⃒Kj
⃒
⃒+ 1, (26.3)

−
∑

h∈Hj
α(r)

jh ⋅I
(

kjt ⩽κ(R)jh < kjt+1

)
+
∑

u∈Uj
β(r)

ju ⋅I
(

kjt− 1 < κ(L)ju ⩽kjt

)
⩾ 0, ∀r, ∀j, t = 1, ...,

⃒
⃒Kj
⃒
⃒. (26.4)

(26) 
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contrast, projecting only a few units onto the frontier can achieve a good 
characterization of the technology. Adopting an approach where only a 
portion of the observed output is substituted, while preserving the 
remainder, has proven beneficial in improving the model performance, 
as we will show. As illustrated in Table 1, the ACES model performs well 
when the DMU’s relative position remains consistent across both single- 
output and multi-output analyses, thereby accurately capturing the 
DMU’s maximum production capacity. Considering these factors, and to 
mitigate the negative effects of inaccurate predictions, we implement 
the following strategy to refine the ACES estimates: 

ŷir =

{

f̂
ACES(r)

(xi),
⃒
⃒ϕ(r) − ϕ

⃒
⃒ < ρ

yir,
⃒
⃒ϕ(r) − ϕ

⃒
⃒⩾ρ

, i = 1, ..., n, r = 1, ..., s, (28) 

where ϕ(r) is the DEA-based output-oriented radial score utilizing all 
inputs and only the r− th output, ϕ is the DEA-based output-oriented 

radial score utilizing all the available variables, f̂
ACES(r)

(xi) is the r− th 
output prediction for the i− th DMU by an ACES model, and ρ is a 

threshold that prioritizes either predicted output f̂
ACES(r)

(x) or observed 
output yir to constitute 

{(
x*

i , ŷi
) }n

i=1. Following our experience, a 
threshold value of ρ = 0.05 generally performs well across different 
scenarios, while a value of ρ = 0 corresponds to the standard DEA 
technology. Notably, in the case of considering a single output all 
observed units are replaced by the predicted units.

Finally, we can define the ACES technology as follows: 

φ̂ACES =

{

(x, y) ∈ Rm+s
+ : xj⩾

∑n

i=1
λixij, j = 1,…,m, yr⩽

∑n

i=1
λi ŷir, r

= 1,…, s,
∑n

i=1
λi = 1, λi⩾0, i = 1,…, n

}

. (29) 

Several aspects merit consideration when comparing this new DEA- 
type technology with the well-established DEA-VRS technology (φ̂DEA)

defined in (2). In the standard DEA framework, technology construction 
hinges on historical data, where the observed input and output quanti
ties for all DMUs form the “core” dataset. This data is then used to 
incorporate new virtual productions into the technology set, guided by 
assumptions like convexity, free disposability, and minimal extrapola
tion. Traditional DEA addresses the question of ‘What other 
input–output combinations can be guaranteed as producible based on 
the observed units?’ assuming that some efficient DMUs are always 
observed. However, the ACES framework shifts away from this 
assumption. Here, the observation of truly efficient DMUs is no longer 
assumed. Instead, the aim is to establish a (more realistic) technology by 
including input–output combinations that are better than those 
observed. This is done by varying the primary dataset composition. In 
this scenario, the primary data is no longer just the observed units but 
includes a virtual sample generated by the ACES model. This new 
sample contains the m original input vectors, as well as a set of r (new) 
“pushed-up” output vectors.

Convexity and free disposability of inputs and outputs in (29) are 
easily verified. It can also be proved that φ̂DEA ⊆ φ̂ACES. The minimal 
extrapolation assumption is not imposed; instead, our approach posi
tions the frontier as closely as possible to the new virtual data sample. In 
this way, the issue of overfitting can be addressed.

4. Measuring technical efficiency through Adaptive Constrained 
Enveloping splines

Expression (29) defines a technology under variable returns to scale 

that is separated from the observed data set by eliminating the minimum 
extrapolation axiom. Next, we show how to measure the efficiency of a 
DMU with input–output bundle 

(
x0, y0

)
using φ̂ACES depending on the 

type of measure considered (see, for example, Pastor et al., 2012).
The output-oriented radial measure (Banker et al., 1984): 

maximize
ϕ,λ

ϕ

subject to
∑n

i=1
λixij ⩽ x0j, ∀j,

∑n

i=1
λi ŷir ⩾ ϕy0r, ∀r,

∑n

i=1
λi = 1,

λi ⩾ 0, ∀i.

(30) 

The input-oriented radial measure (Banker et al., 1984): 

minimize
θ,λ

θ

subject to
∑n

i=1
λixij ⩽ θx0j, ∀j,

∑n

i=1
λi ŷir ⩾ y0r, ∀r,

∑n

i=1
λi = 1,

λi ⩾ 0, ∀i.

(31) 

The Directional Distance Function (Chambers et al., 1998): 

maximize
δ,λ

δ

subject to
∑n

i=1
λixij ⩽ x0j − δGxj , ∀j,

∑n

i=1
λi ŷir ⩾ y0r + δGyr , ∀r,

∑n

i=1
λi = 1,

λi ⩾ 0, ∀i.

(32) 

Here 
(
Gx, Gy

)
=
(
Gx1 , ...,Gxm ,Gy1 , ...,Gys

)
represents a directional 

projection vector to the frontier, where 
(
x0, y0

)
+ δ
(
Gx, Gy

)
, with δ⩾0, 

intersects the frontier.
Additionally, other well-known efficiency measures can be deter

mined in a similar manner. Additive models such as the Measure of In
efficiency Proportions (Cooper et al., 1999), the Normalized Weighted 
Additive Model (Lovell and Pastor, 1995), the Range Adjusted Measure 
(Cooper et al., 1999), and the Bounded Adjusted Measure (Cooper et al., 
2011) can be applied. Likewise, input- and output-oriented non-radial 
Russell measures (Färe and Lovell, 1978; Färe et al., 1985) and the 
Enhanced Russell Graph Measure (Pastor et al., 1999) are also 
compatible with this approach, among others.

5. Computational experiments and hyperparameter tuning

This section is divided into three subsections. The first introduces 
two distinct sets of computational experiments, based on the frame
works proposed by Perelman and Santín (2009) and Fare et al. (1994), 
respectively. Each experimental scenario is defined by three key pa
rameters: the sample size, the number of truly efficient units located on 
the underlying production frontier, and the presence or absence of 
random noise. In scenarios with noise, some observations may lie above 
the true frontier. These experiments are designed to evaluate the per
formance of the proposed ACES methodology in comparison with 
several well-established techniques in the field, including DEA by 
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Banker et al. (1984), StoNED by Kuosmanen and Johnson (2017), the 
convexified version of EAT (CEAT) by Esteve et al. (2020), and Bootstrap 
DEA (BDEA) by Simar and Wilson (1998, 2000).

Both experimental designs involve estimating the true radial output 
score (ϕ). To this end, we employ the available data to estimate ϕ using 

different techniques, denoted as ϕ̂
ACES

, ϕ̂
DEA

, ϕ̂
StoNED

, ϕ̂
CEAT 

and ϕ̂
BDEA

. 

The ϕ̂
ACES 

score is obtained using the methodology outlined in this 

paper, with model (29) used as the final step. The ϕ̂
DEA 

score is 
computed following the standard procedure described in Banker et al. 

(1984). The ϕ̂
StoNED 

score is derived using the StoNED method 
(Kuosmanen and Johnson, 2017), implemented via the Python package 
pyStoNED as described by Dai et al. (2021). Specifically, to perform 
StoNED, we use the directional projection vector to the frontier 

(
Gx,

Gy
)
=
(
0, 0, σy1 , σy2

)
, where σy1 and σy2 denote the standard deviation of 

outputs y1 and y2, respectively (see Kuosmanen and Johnson, 2017). The 

ϕ̂
CEAT 

score is calculated using the convexified version of EAT (Esteve 
et al. 2020), which replaced the original stepwise frontier with a 
piecewise lineal production function. To implement this, we rely on the 
eat R package (Esteve et al. 2022), using its default configuration of five 

units per terminal node to prevent excessive splitting. Finally, the ϕ̂
BDEA 

score is obtained by applying the Bootstrap DEA method (Simar and 
Wilson, 1998, 2000) using the Benchmarking R package (Bogetoft et al., 
2015) under variable returns to scale and 1,000 bootstrap replications.

The second subsection introduces the set of hyperparameters avail
able to configure the ACES methodology. It specifies the values adopted 

for each hyperparameter under the two experimental designs described 
previously. In addition, it provides a detailed procedure for configuring 
ACES in general, offering practical guidance on how to tune the method 
for any given application scenario.

The third subsection presents the results obtained from the simula
tions. For each combination of scenario, 100 independent trials were 
conducted to evaluate the relative performance of the methods. Three 
evaluation criteria are considered: Mean Squared Error (MSE), bias, and 
computational time. The MSE captures the average magnitude of the 
estimation error by measuring the squared differences between the 
estimated and true radial output scores. Bias quantifies the average di
rection of the error, indicating whether a method systematically over
estimates or underestimates the true frontier. Computational time, in 
turn, provides a practical assessment of the algorithm’s efficiency, 
reflecting its applicability to large-scale or time-sensitive problems. 
Together, these metrics offer a comprehensive assessment of each 
model’s accuracy, estimation behavior, and computational 

performance.
Finally, we present the computational resources used for the esti

mations. Specifically, ACES and DEA evaluations were performed on the 
Dantzig Cluster at Miguel Hernández University (UMH), using a Su
permicro SYS-120GQ-TNRT node equipped with two Intel® Xeon® 
Silver 4316 CPUs at 2.30 GHz, providing 80 cores and 768 GB of RAM. 
The simulations were executed under Rocky Linux 8.7, using R version 
4.2.3. The complete ACES implementation is publicly available at https 
://github.com/Victor-Espana/aces. Optimization problems were solved 
using the Rglpk package (Theussl and Hornik, 2019). StoNED estima
tions were carried out in Python using the pystoned library (Dai et al., 
2021), with models solved locally by using the default MOSEK solver 
(Mosek, 2021) .

5.1. Experimental setup

This section presents two complementary experimental designs, 
inspired by the methodologies outlined in Perelman and Santín (2009)
and Fare et al. (1994) , which serve as the basis for evaluating the 
performance of the proposed approach.

5.1.1. Perelman and Santín (2009)
In the first design, following Perelman and Santín (2009), we simu

late datasets with two inputs and two outputs that satisfy standard mi
croeconomic postulates. Input variables are randomly drawn from a 
uniform distribution U(5,50), while the outputs in the production 
frontier are generated through the following formula:  

where ln
(

y2
y1

)

∼ U( − 1.5,1.5). To introduce the inefficiency term, a half 

normal distribution u ∼
⃒
⃒N
(
0,

̅̅̅̅̅̅̅
0.3

√ ) ⃒
⃒ was used. Random noise was 

incorporated through normal distributions v1,v2 ∼ N
(
0,

̅̅̅̅̅̅̅̅̅̅
0.01

√ )
.

Consequently, observed outputs, which reflect technical inefficiency, 
are calculated as follows: 

y1 = y*
1⋅

1
eu,

y2 = y*
2⋅

1
eu.

(34) 

Additionally, to incorporate random error, the following formulas 
were applied: 

y1 = y*
1⋅

1
eu⋅

1
ev1

,

y2 = y*
2⋅

1
eu⋅

1
ev2

.

(35) 

In this context, the true radial score is defined as: 

ϕ =
y*

1
y1

=
y*

2
y2

(36) 

For each scenario, five distinct sample sizes are analyzed: 50, 100, 
150, 200, and 300 observations. Additionally, we consider four different 
proportions of DMUs located on the true frontier: 0 %, 5 %, 10 %, and 20 

Table 2 
Configuration of producer groups by scale level and data generation parameters.

Producer size f(x) = h(y) ϖ x1 y*
1

Small 25 0.898 [20, 60] [10, 35]
Medium I 50 1.000 [30, 80] [15, 70]
Medium II 75 1.000 [50, 100] [25, 100]
Large 100 0.927 [90, 230] [45, 135]

− ln
(
y*

1

)
= − 1 + 0.5⋅ln

(
y2

y1

)

+ 0.25⋅ln
(

y2

y1

)2

− 1.5⋅ln(x1) − 0.6⋅ln(x2) + 0.2⋅ln(x1)
2
+ 0.05⋅ln(x2)

2

− 0.1⋅ln(x1)⋅ln(x2) + 0.05⋅ln(x1)⋅ln
(

y2

y1

)

− 0.05⋅ln(x2)⋅ln
(

y2

y1

)

,

− ln
(
y*

2
)
= − ln

(
y*

1
)
− ln

(
y2

y1

)

,

(33) 
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%. For these units, equations (34) and (35) are not applied, and there
fore the observed outputs coincide with the theoretical ones, i.e., yr =

y*
r , r = 1, 2. Finally, each scenario is further classified into two var

iants—those with random noise and those without. In the noisy case, 
equation (35) is applied to introduce stochastic deviations, which may 
cause some observations to appear above the true frontier. In the noise- 
free variant, only technical inefficiency is considered through equation 
(34), unless the unit lies on the true frontier, in which case no distortion 
is applied.

5.1.2. Färe et al. (1994)
The second experimental design is adapted from Fare et al. (1994)

and reflects a stylized production setting where technologies exhibit 
increasing, constant, and decreasing returns to scale. These simulations 
are constructed in a two-input, two-output setting. In this framework, 
the input side of the production function is modeled using a log-linear 
Cobb–Douglas specification, while the output side follows a Constant 
Elasticity of Transformation (CET) function. The input–output combi
nations are simulated to satisfy the identity: 

f(x) = h(y), (37) 

where 

f(x) = (
̅̅̅̅̅
x1

√
⋅
̅̅̅̅̅
x2

√
)

ϖ
, (38) 

and 

h(y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
y2

1 +
1
2
y2

2

√

. (39) 

From equations (38) and (39), we define four different groups of 
producers. Once the sample size is fixed, each observation is randomly 
assigned to one of these groups—small, medium I, medium II, or 
large—with equal probability (i.e., each group receives close to 25 % of 
the total observations). This approach ensures a balanced representation 
across different production technologies and supports a realistic simu
lation of varying returns to scale. For each group, the first input (x1) and 
the first output 

(
y*

1
)

are independently drawn from uniform distribu
tions, specifically x1 ∼ U(ax, bx) and y*

1 ∼ U
(
ay, by

)
, where (ax, bx) and 

(
ay, by

)
represent the lower and upper bounds for the input and output 

variables, respectively. These bounds vary across groups to reflect dif
ferences in scale and production capacity.

Therefore, each group is characterized by a common frontier identity 
f(x) = h(y), a group-specific scale elasticity ϖ used in equation (38), and 
the specific data generation intervals for x1 and y*

1. Table 2 summarizes 
the configuration of each group:

Once the values of x1 and y*
1 are generated, the second input (x2) and 

the second output 
(
y*

2
)

are computed to ensure that each observation 
satisfies the pre-assigned values of f(x) and h(y). Regarding, inefficiency 
and random noise, these are introduced following the same procedure 
described in the Perelman and Santín (2009) design.

Finally, the true radial score is computed as: 

ϕ =
f(x)
h(y)

(40) 

In this case, each scenario considers five distinct sample sizes: 25, 75, 
125, 175, and 250 observations. As before, we evaluate four different 
proportions of DMUs located on the true frontier: 0 %, 5 %, 10 %, and 20 
%, under both noise-free and noisy conditions.

5.2. The set of available hyperparameters

The ACES algorithm offers a wide range of hyperparameters that 
allow for the customization of the model according to specific re
quirements and data characteristics. Throughout the text, several 
important hyperparameters have been described, which are outlined in 
Table 3:

For optimal hyperparameter selection, techniques like k-fold cross- 

Table 4 
Performance comparison of different approaches in the first stage of ACES in 
scenarios without random noise.

border n Approach 1 Approach 2 Approach 
3

Approach 4

Monotonicity 
and concavity

Only 
monotonicity

Only 
concavity

Only 
envelopment

0 % 50 0.095 0.105 0.116 0.133
100 0.066 0.058 0.061 0.067
150 0.053 0.048 0.045 0.044

5 % 50 0.073 0.085 0.098 0.104
100 0.055 0.052 0.052 0.055
150 0.057 0.045 0.046 0.041

10 % 50 0.063 0.080 0.096 0.094
100 0.055 0.049 0.046 0.046
150 0.053 0.046 0.041 0.040

20 % 50 0.063 0.069 0.064 0.064
100 0.060 0.045 0.037 0.041
150 0.061 0.053 0.049 0.037

Table 5 
Performance comparison of different approaches in the first stage of ACES in 
scenarios with random noise.

border n Approach 1 Approach 2 Approach 
3

Approach 4

Monotonicity 
and concavity

Only 
monotonicity

Only 
concavity

Only 
envelopment

0 % 50 0.115 0.128 0.131 0.163
100 0.092 0.083 0.088 0.085
150 0.100 0.079 0.081 0.067

5 % 50 0.102 0.120 0.122 0.118
100 0.095 0.074 0.074 0.081
150 0.089 0.080 0.072 0.064

10 % 50 0.101 0.101 0.101 0.133
100 0.094 0.078 0.071 0.077
150 0.089 0.080 0.074 0.067

20 % 50 0.093 0.098 0.078 0.103
100 0.092 0.085 0.069 0.064
150 0.098 0.080 0.076 0.061

Table 3 
Set of available hyperparameters to perform an ACES model.

Hyperparameter Description

η Maximum number of BFs allowed in the model after the forward 
algorithm.

ξ Maximum error reduction rate required to add a BF to the model 
during the forward algorithm.

qmax Maximum degree of variable interaction during the forward 
algorithm.

ξ(q) Minimum improvement ratio over the best 1-degree BF required 
to include a q− th degree BF in the model.

minspan Minimum number of observations required between two 
consecutive knots. This can be a fixed integer or one of the 
adaptations proposed by Friedman (1991) and Zhang (1994).

endspan Minimum number of observations required between the extreme 
knots and the extremes of the data. This can be an integer or one 
of the adaptations proposed by Friedman (1991) and Zhang 
(1994).

grid Set of possible locations for the knots. In Friedman (1991), the 
observed data points are used. However, this value can be varied 
to reduce the computational load of the forward algorithm.

LOF Model coefficients are estimated using the LP models proposed 
throughout the text. However, for basis evaluation, Mean 
Squared Error or any other lack-of-fit metric, such as Mean 
Absolute Error, can be used.

d Penalty factor for retaining knots during the backward algorithm.
ρ Threshold that determines if the predicted output or the observed 

value is used in the refinement step.
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validation (CV) are recommended. In our computational experiments, a 
5-fold CV approach was used, where the data is divided into five subsets. 
The model is trained on four folds and tested on the fifth, repeating the 
process so each fold serves as a test set once. In order to improve the 
relevance of the evaluation in efficiency analysis, the predictive errors 
on the test fold are weighted using DEA-based radial output efficiency 
scores. Specifically, for each unit in the test fold, a DEA model is esti
mated using only the test data, and the inverse of the resulting efficiency 
score is used as a weight. This allows us to emphasize errors in more 
(out-of-sample) efficient DMUs, which are more relevant from a 
benchmarking perspective. The squared differences between the 
(optimal) predicted and observed outputs are computed and weighted 
accordingly, producing a weighted Mean Squared Error for each fold. 
These values are then averaged across folds to guide hyperparameter 
selection.

For standard scenarios, the following hyperparameter values are 
recommended for testing. For η, multiples of 10 should be considered, up 
to the total number of observations in the dataset. Regarding ξ, typical 
values could range from 0, 0.005, 0.01, 0.02 or even 0.05 if the sample 
size is particularly large. For qmax, it is advisable to test values of 1 or 2, 
and in cases where the number of features allows, 3 can be consid
ered—although higher values may lead to excessive expansion of the 
feature space and increased computational burden. For ξ(q), values such 
as 0, 0.05, 0.10, 0.20, or 0.50 could be tested. However, when ξ(q) is 
close to 0.50, the model often defaults to a first-degree approximation. 
As a good practice, if the goal is to explore higher-degree BFs, the 
maximum model degree should be set greater than one, and at least one 
relatively high value of ξ(q) should be included to ensure that only suf
ficiently effective higher-degree terms are retained. For both minspan 
and endspan, it is recommended to use the values proposed by Friedman 
(1991) and Zhang (1994), or, alternatively, to omit these parameters. As 
for the grid, unless computational issues arise, it is recommended to use 
the dataset’s own values for the knots. Regarding, for the LOF criterion, 
it is suggested to keep the Mean Squared Error (MSE) as the default, 
while for the penalty factor d, reasonable values to test are 0, 1, and 2.

All the aforementioned hyperparameters directly affect the estima
tion of the optimal output vector ŷi, as they intervene during the model 
fitting process. In contrast, the threshold ρ, used in the refinement step 
(28), does not influence the estimation of ŷi, but rather determines how 
the virtual dataset 

{(
x*

i , ŷi
) }n

i=1 is constructed by deciding when to 
replace a predicted output with its observed counterpart. Typical values 
include 0, 0.05, or 0.10, depending on how conservatively one wishes to 
correct potentially overestimated outputs. As a rule of thumb, ρ = 0.05 is 
a reasonable and robust choice across various scenarios.

Due to the large number of simulations carried out in this study, it 
was not feasible to perform an exhaustive search over the entire 
hyperparameter space. For this reason, some hyperparameter were fixed 
while others were varied. The maximum degree of variable interaction 
qmax was fixed at 2; the maximum number of BFs η was set to the number 
of DMUs in the analysis; the minimum error reduction rate ξ was set to 
0.005; the knot penalty d was tested with values 1 and 2; the minimum 

span followed Friedman’s (1991) recommendation, while the end span 
was not used; the knot grid was defined using the observed data points; 
and the lack-of-fit criterion was based on the Mean Squared Error. 
Additionally, the threshold ρ used in the refinement step was set to 0.05. 
Finally, the hyperparameter ξ(q) was tested across a range of values 
specific to each simulation setting. In the experiments based on Perel
man and Santín (2009), we used ξ(2) ∈ {0.10,0.20,0.50}, while in the 
simulations following Fare et al. (1994), we tested ξ(2) ∈ {0,0.05,0.10}.

Beyond the hyperparameters listed in Table 2, model performance 
can also be influenced by the shape constraints imposed during the first 
stage of the method. These constraints—specifically, monotonicity and 
concavity—can be selectively applied depending on the application 
context. For instance, to construct a fully flexible envelopment model, 
both constraints (26.3) and (26.4) should be omitted. If only non- 
decreasing monotonicity is desired, constraint (26.3) should be 
enforced, whereas constraint (26.4) ensures concavity. When both 
properties are required, both constraints must be simultaneously 
applied.

It is important to note that both the introduction of interaction terms 
and the refinement phase can disrupt the shape constraints imposed 
during the first estimation stage. In particular, the interactions trans
form the input space in a way that may not preserve monotonicity and 
concavity in the original dimensions, while the refinement step—by 
selectively replacing predicted outputs with observed ones—can 
directly violate any previously enforced structural properties. This 
naturally leads to the following question: given that the final DEA-type 
technology is constructed in the last step by applying Equation (29), 
which inherently satisfies all shape axioms, is it truly necessary—or even 
beneficial—to enforce monotonicity and concavity during the initial 
estimation phase? In principle, these shape constraints could be treated 
as an additional hyperparameter of the model, selected adaptively to 
best suit the data at hand. However, instead of adopting this strategy, we 
aim to offer practical guidance by analyzing the conditions under which 
each configuration of shape constraints performs best. To this end, we 
conduct a simulation study based on the design of Perelman and Santín 
(2009), evaluating the predictive performance of four constraint con
figurations across multiple sample sizes and noise levels.

The results are presented in Table 4 for noise-free scenarios and in 
Table 5 for scenarios with random noise. In both cases, 100 independent 
trials were performed for every combination of sample size and pro
portion of units located on the true frontier. Four model configurations 
were considered: (i) both monotonicity and concavity imposed 
(approach 1); (ii) only monotonicity (approach 2); (iii) only concavity 
(approach 3); and (iv) no shape constraints (approach 4). In all settings, 
the envelopment condition was enforced to ensure that predicted out
puts lie above the observed data.

In both scenarios, clear trends emerge that provide guidance for 
characterizing ACES. When dealing with a small sample size, such as 50 
units or fewer, it is generally advisable to impose both shape constraints 
(approach 1) regardless of the proportion of units on the true frontier. 
Conversely, with a sample size of 100 units or more, it becomes pref
erable to impose only one of the shape constraints, regardless of which 

Table 6 
Effect of hyperparameter configuration on estimation error and computation time.

Configuration ξ ξ(q) Monotonicity Concavity MSE Time Ranking_CV

1 0.005 0 TRUE TRUE 0.02 88 4
2 0.010 0.50 FALSE TRUE 0.02 61 1
3 0.005 0 TRUE FALSE 0.04 158 13
4 0.010 0.10 TRUE TRUE 0.05 52 3
5 0.010 0.20 TRUE TRUE 0.05 52 7
36 0.010 0.05 FALSE FALSE 0.12 128 36
37 0.005 0.10 FALSE FALSE 0.12 128 23
38 0.010 0.10 FALSE FALSE 0.12 128 35
39 0.005 0.20 FALSE FALSE 0.12 128 34
40 0.010 0.20 FALSE FALSE 0.12 128 40
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one (approach 2 or 3). When the sample size reaches 150 units or more, 
it is most effective to impose the envelopment conditions (approach 4). 
This trend occurs because, as the sample size increases, the units natu
rally tend to align more closely with the true production frontier and its 
geometrical features. In contrast, with smaller sample sizes, the addi
tional information from the shape of the DGP improves model 
performance.

Although the section provides practical guidance on how to select 
the hyperparameters of the ACES model, in practice—and whenever 
computational resources allow—it is recommended to perform a CV 

procedure to identify the most suitable configuration. To illustrate this, 
we present a minimal example based on the simulation framework 
proposed by Fare et al. (1994) , using a dataset of 100 DMUs. This 
experiment explores the sensitivity of the method to hyperparameter 
selection by applying a 5-fold CV under varying configurations, assess
ing its impact on both the prediction error and the computational time. 
In particular, we test two values for the minimum error reduction rate 
ξ ∈ {0.005,0.01}; five values for the interaction threshold 
ξ(2) ∈ {0,0.05,0.10,0.20,0.50}; and all possible combinations of 

Table 7 
Computational experiments in scenarios without random noise in Perelman and Santín (2009).

% Eff. 
points

n Mean Squared Error 
(ACES vs baseline model)

Bias Computation time

ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED

0 % 50 0.115 0.206 
(− 44.2 
%)

0.129 
(− 11.1 
%)

1.596 
(− 92.8 
%)

0.169 
(− 31.9 
%)

− 0,194 − 0,333 − 0,200 0,560 − 0,169 10 0 5 4 1

100 0.071 0.137 
(− 48.2 
%)

0.078 
(− 9.7 
%)

1.962 
(− 96.4 
%)

0.132 
(− 46.3 
%)

− 0,148 − 0,261 − 0,131 0,690 − 0,213 34 0 13 11 1

150 0.063 0.103 
(− 38.9 
%)

0.056 
(+11.3 
%)

2.207 
(− 97.2 
%)

0.118 
(− 46.7 
%)

− 0,082 − 0,223 − 0,102 0,778 − 0,229 323 0 24 22 3

200 0.051 0.083 
(− 38.2 
%)

0.043 
(+18.3 
%)

2.320 
(− 97.8 
%)

0.105 
(− 51.3 
%)

− 0,063 − 0,197 − 0,081 0,801 − 0,210 989 0 35 38 16

300 0.038 0.056 
(− 31.7 
%)

0.027 
(+41.9 
%)

3.343 
(− 98.8 
%)

0.100 
(− 61.6 
%)

− 0,021 − 0,163 − 0,056 1,071 − 0,212 2920 0 93 95 21

5 % 50 0.100 0.171 
(− 41.3 
%)

0.106 
(− 4.9 
%)

1.859 
(− 94.6 
%)

0.172 
(− 41.5 
%)

− 0,142 − 0,286 − 0,146 0,647 − 0,142 10 0 5 4 0

100 0.056 0.109 
(− 48.6 
%)

0.064 
(− 11.8 
%)

2.512 
(− 97.8 
%)

0.100 
(− 43.9 
%)

− 0,105 − 0,214 − 0,083 0,837 − 0,184 40 0 12 10 1

150 0.047 0.082 
(− 42.7 
%)

0.048 
(− 0.8 
%)

2.071 
(− 97.7 
%)

0.099 
(− 52.3 
%)

− 0,041 − 0,177 − 0,051 0,739 − 0,194 342 0 22 19 5

200 0.043 0.056 
(–23.6 
%)

0.030 
(+45.0 
%)

2.557 
(− 98.3 
%)

0.092 
(− 53.5 
%)

− 0,010 − 0,150 − 0,032 0,891 − 0,189 909 0 34 31 12

300 0.036 0.044 
(− 19.9 
%)

0.025 
(+44.7 
%)

3.630 
(− 99.0 
%)

0.092 
(− 61.4 
%)

0,018 − 0,122 − 0,013 1,102 − 0,201 3161 0 77 93 22

10 % 50 0.082 0.149 
(− 44.7 
%)

0.092 
(− 10.5 
%)

1.846 
(− 95.5 
%)

0.144 
(− 42.7 
%)

− 0,105 − 0,260 − 0,123 0,697 − 0,070 15 0 8 5 0

100 0.049 0.091 
(− 46.6 
%)

0.054 
(− 9.8 
%)

1.846 
(− 97.4 
%)

0.095 
(− 48.4 
%)

− 0,075 − 0,185 − 0,052 0,747 − 0,159 51 0 19 17 1

150 0.044 0.061 
(− 28.6 
%)

0.035 
(+23.8 
%)

2.161 
(− 98.0 
%)

0.085 
(− 48.6 
%)

− 0,015 − 0,146 − 0,021 0,788 − 0,165 390 0 25 23 3

200 0.041 0.047 
(− 12.3 
%)

0.027 
(+52.6 
%)

2.595 
(− 98.4 
%)

0.081 
(− 48.6 
%)

0,015 − 0,123 − 0,005 0,899 − 0,162 967 0 35 33 8

300 0.037 0.033 
(+13.8 
%)

0.021 
(+80.6 
%)

3.249 
(− 98.8 
%)

0.071 
(− 47.7 
%)

0,047 − 0,091 0,015 1,051 − 0,147 3041 0 75 71 29

20 % 50 0.060 0.105 
(− 42.9 
%)

0.067 
(− 10.5 
%)

1.966 
(− 97.0 
%)

0.146 
(− 59.1 
%)

− 0,052 − 0,195 − 0,057 0,757 − 0,056 10 0 5 3 0

100 0.035 0.070 
(− 49.5 
%)

0.048 
(− 26.2 
%)

2.288 
(− 98.5 
%)

0.070 
(− 49.5 
%)

− 0,026 − 0,134 − 0,005 0,831 − 0,100 37 0 12 10 1

150 0.043 0.044 
(− 3.4 
%)

0.029 
(+47.8 
%)

2.556 
(− 98.3 
%)

0.063 
(–32.4 
%)

0,034 − 0,103 0,014 0,905 − 0,097 411 0 28 30 6

200 0.042 0.038 
(+9.5 
%)

0.027 
(+52.7 
%)

2.626 
(− 98.4 
%)

0.054 
(–22.7 
%)

0,053 − 0,084 0,026 0,926 − 0,098 883 0 34 37 6

300 0.033 0.028 
(+16.7 
%)

0.020 
(+58.8 
%)

3.022 
(− 98.9 
%)

0.051 
(− 36.8 
%)

0,065 − 0,065 0,033 1,022 − 0,081 2522 0 77 73 33
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Table 8 
Computational experiments in scenarios with random noise in Perelman and Santín (2009).

% Eff. points n Mean Squared Error 
(ACES vs baseline model)

Bias Computation time

ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED

0 % 50 0,143 0,233 
(− 38.8 %)

0,158 
(− 9.4 %)

1,785 
(− 92.0 %)

0,234 
(− 39.0 %)

− 0,153 − 0,319 − 0,172 0,658 − 0,137 15 0 8 5 0

100 0,085 0,127 
(–32.8 %)

0,083 
(+3.1 %)

2,004 
(− 95.8 %)

0,143 
(− 40.3 %)

− 0,094 − 0,217 − 0,077 0,729 − 0,214 36 0 13 11 1

150 0,087 0,116 
(− 24.3 %)

0,083 
(+5.8 %)

2,510 
(− 96.5 %)

0,141 
(− 38.0 %)

− 0,043 − 0,174 − 0,036 0,822 − 0,222 321 0 24 22 3

200 0,077 0,098 
(− 21.5 %)

0,075 
(+2.0 %)

3,058 
(− 97.5 %)

0,131 
(− 41.6 %)

0,003 − 0,138 − 0,002 1,001 − 0,212 1036 0 30 49 10

300 0,081 0,069 
(+17.0 %)

0,061 
(+32.3 %)

4,159 
(− 98.1 %)

0,128 
(− 37.1 %)

0,066 − 0,089 0,038 1,216 − 0,217 3659 0 55 111 14

5 % 50 0,130 0,188 
)-30.7 %)

0,125 
(+4.4 %)

1,748 
(− 92.6 %)

0,198 
(− 34.2 %)

− 0,115 − 0,277 − 0,132 0,651 − 0,137 14 0 4 5 0

100 0,079 0,126 
(− 37.0 %)

0,087 
(− 9.4 %)

2,111 
(− 96.2 %)

0,132 
(− 40.0 %)

− 0,082 − 0,193 − 0,052 0,741 − 0,202 50 0 19 17 1

150 0,074 0,085 
(− 12.7 %)

0,065 
(+14.4 %)

2,582 
(− 97.1 %)

0,115 
(− 35.4 %)

0,000 − 0,133 0,005 0,862 − 0,186 434 0 34 34 3

200 0,078 0,081 
(− 3.20 %)

0,067 
(+17.9 %)

3,248 
(− 97.6 %)

0,109 
(− 28.3 %)

0,039 − 0,108 0,024 1,027 − 0,179 1203 0 56 59 9

300 0,085 0,063 
(+35.5 %)

0,059 
(+43.4 %)

4,111 
(− 97.9 %)

0,113 
(− 25.0 %)

0,084 − 0,069 0,053 1,203 − 0,197 3941 0 102 109 15

10 % 50 0,113 0,185 
(− 39.2 %)

0,129 
(− 12.7 %)

2,075 
(− 94.6 %)

0,172 
(− 34.3 %)

− 0,095 − 0,250 − 0,102 0,711 − 0,125 11 0 5 3 0

100 0,069 0,102 
(–32.7 %)

0,074 
(− 7.0 %)

2,317 
(− 97.0 %)

0,125 
(− 45.0 %)

− 0,043 − 0,161 − 0,016 0,803 − 0,150 38 0 12 10 2

150 0,072 0,085 
(− 15.3 %)

0,069 
(+5.0 %)

2,845 
(− 97.5 %)

0,101 
(− 28.7 %)

0,020 − 0,116 0,019 0,948 − 0,156 338 0 23 20 4

200 0,073 0,071 
(+2,6%)

0,062 
(+17.9 %)

3,504 
(− 97.9 %)

0,103 
(− 29.2 %)

0,050 − 0,089 0,038 1,016 − 0,170 994 0 36 33 8

300 0,080 0,057 
(+41.6 %)

0,057 
(+41.8 %)

4,292 
(− 98.1 %)

0,096 
(− 16.0 %)

0,091 − 0,052 0,065 1,250 − 0,164 3508 0 71 68 14

20 % 50 0,090 0,138 
(− 34.4 %)

0,100 
(− 9,9%)

1,994 
(− 95.5 %)

0,178 
(− 49.4 %)

− 0,036 − 0,186 − 0,045 0,766 − 0,068 11 0 4 3 0

100 0,055 0,079 
(− 31.2 %)

0,062 
(− 11.5 %)

2,204 
(− 97.5 %)

0,083 
(− 34.2 %)

− 0,013 − 0,121 0,012 0,846 − 0,092 37 0 11 9 2

150 0,063 0,066 
(− 5.1 %)

0,056 
(+11.6 %)

2,403 
(− 97.4 %)

0,082 
(–23.9 %)

0,048 − 0,085 0,037 0,890 − 0,119 317 0 22 19 5

200 0,071 0,054 
(+31.8 %)

0,050 
(+40.5 %)

2,857 
(− 97.5 %)

0,075 
(− 5.5 %)

0,077 − 0,061 0,055 0,987 − 0,110 925 0 35 32 9

300 0,067 0,047 
(+44.6 %)

0,047 
(+42.1 %)

3,726 
(98.2 %)

0,067 
(+0.1 %)

0,100 − 0,036 0,066 1,174 − 0,083 2730 0 75 78 23
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enforcing or not enforcing monotonicity and concavity.
Table 6 presents the five best and five worst hyperparameter con

figurations out of the forty evaluated in this experiment. For each 
configuration, the table reports the value of the assessed hyper
parameters, the true mean squared error (MSE), the computational time 
(in seconds), and the ranking position derived from CV (column 
“Ranking_CV”).

Some considerations must be made regarding the influence of 
hyperparameters on model performance and computational cost. First, 
the results depend heavily on the selected configuration, as even small 

changes in the hyperparameter values can lead to noticeable variations 
in both error and runtime. While cross-validation does not always select 
the absolute best configuration, it consistently identifies high- 
performing ones, making it the preferred approach for tuning in prac
tical applications. Additionally, the computational time is strongly 
driven by these few hyperparameters—particularly the error reduction 
threshold ξ and the shape constraints. While the former allows for a 
longer forward selection stage, the latter can slow down the convergence 
of the model if shape constraints are needed but not enforced, as the 
model may compensate by incorporating a larger number of BFs to 

Table 9 
Computational experiments in scenarios withrandom noise in Fare et al. (1994).

% Eff. 
points

n Mean Squared Error 
(ACES vs baseline model)

Bias Computation time

ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED

0 % 25 0,243 0,406 
(− 40.2 
%)

0,308 
(21.2 
%)

0,749 
(− 67.6 
%)

​ − 0,327 − 0,453 − 0,330 0,321 ​ 9 0 2 2 ​

75 0,094 0,310 
(− 69.7 
%)

0,227 
(− 58.5 
%)

1,407 
(− 93.3 
%)

0,242 
(− 61.2 
%)

− 0,180 − 0,337 − 0,205 0,626 − 0,164 40 0 13 11 1

125 0,053 0,259 
(− 79.4 
%)

0,184 
(− 71.0 
%)

1,426 
(− 96.3 
%)

0,168 
(− 68.3 
%)

− 0,114 − 0,282 − 0,148 0,675 − 0,159 71 0 19 18 5

175 0,062 0,236 
(− 73.6 
%)

0,167 
(− 62.7 
%)

1,607 
(− 96.1 
%)

0,233 
(− 73.2 
%)

− 0,118 − 0,251 − 0,122 0,758 − 0,130 834 0 26 39 5

250 0,050 0,236 
(− 78.6 
%)

0,169 
(− 70.2 
%)

2,284 
(− 97.8 
%)

0,124 
(− 59.4 
%)

− 0,088 − 0,227 − 0,102 0,966 − 0,145 2360 0 75 78 19

5 % 25 0,184 0,372 
(− 50.5 
%)

0,289 
(− 36.2 
%)

0,850 
(− 78.3 
%)

​ − 0,247 − 0,386 − 0,264 0,366 ​ 8 0 2 2 ​

75 0,068 0,251 
(− 72.9 
%)

0,173 
(− 60.8 
%)

1,316 
(− 94.8 
%)

0,303 
(− 77.6 
%)

− 0,131 − 0,292 − 0,159 0,653 − 0,084 38 0 7 10 2

125 0,047 0,242 
(− 80.8 
%)

0,174 
(− 73.2 
%)

1,472 
(− 96.8 
%)

0,245 
(− 81.0 
%)

− 0,088 − 0,255 − 0,121 0,701 − 0,107 97 0 25 26 3

175 0,049 0,224 
(− 78.3 
%)

0,161 
(− 69.8 
%)

2,077 
(− 97.7 
%)

0,123 
(− 60.4 
%)

− 0,086 − 0,224 − 0,098 0,878 − 0,132 961 0 44 48 6

250 0,042 0,214 
(− 80.4 
%)

0,155 
(− 72.9 
%)

2,671 
(− 98.4 
%)

0,110 
(− 61.8 
%)

− 0,056 − 0,199 − 0,075 1,071 − 0,111 2611 0 81 85 23

10 % 25 0,168 0,308 
(− 45.4 
%)

0,230 
(− 27.1 
%)

0,872 
(− 80.8 
%)

​ − 0,224 − 0,351 − 0,220 0,402 ​ 9 0 4 2 ​

75 0,066 0,272 
(− 75.7 
%)

0,205 
(− 67.7 
%)

1,287 
(− 94.9 
%)

0,205 
(− 67.7 
%)

− 0,097 − 0,269 − 0,134 0,641 − 0,085 30 0 8 6 1

125 0,039 0,227 
(− 82.7 
%)

0,168 
(− 76.5 
%)

1,508 
(− 97.4 
%)

0,136 
(− 71.1 
%)

− 0,057 − 0,226 − 0,097 0,728 − 0,129 76 0 18 15 3

175 0,046 0,222 
(− 79.2 
%)

0,165 
(− 72.0 
%)

1,653 
(− 97.2 
%)

0,116 
(− 60.3 
%)

− 0,068 − 0,205 − 0,078 0,793 − 0,101 999 0 45 45 7

250 0,039 0,216 
(− 82.0 
%)

0,161 
(− 75.8 
%)

2,514 
(− 98.5 
%)

0,106 
(− 63.2 
%)

− 0,039 − 0,187 − 0,068 1,050 − 0,099 2934 0 84 87 25

20 % 25 0,126 0,245 
(− 48.7 
%)

0,182 
(− 30.8 
%)

0,765 
(− 83.6 
%)

​ − 0,178 − 0,299 − 0,168 0,407 ​ 6 0 2 1 ​

75 0,045 0,215 
(− 78.9 
%)

0,164 
(− 72.4 
%)

1,550 
(− 97.1 
%)

0,276 
(− 83.6 
%)

− 0,058 − 0,217 − 0,088 0,729 − 0,010 29 0 9 7 2

125 0,031 0,185 
(− 83.3 
%)

0,139 
(− 77.7 
%)

1,883 
(− 98.4 
%)

0,120 
(− 74.2 
%)

− 0,027 − 0,185 − 0,058 0,822 − 0,084 74 0 17 15 3

175 0,033 0,172 
(− 80.6 
%)

0,129 
(− 74.0 
%)

1,704 
(− 98.0 
%)

0,086 
(− 61.3 
%)

− 0,031 − 0,164 − 0,046 0,818 − 0,087 853 0 32 33 7

250 0,028 0,177 
(− 84.2 
%)

0,134 
(− 79.0 
%)

2,260 
(− 98.8 
%)

0,080 
(− 65.2 
%)

− 0,006 − 0,150 − 0,037 0,964 − 0,091 2334 0 57 56 17
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Table 10 
Computational experiments in scenarios without random noise in Fare et al. (1994). (* Omitted due to anomalous results).

% Eff. 
points

n Mean Squared Error 
(ACES vs baseline model)

Bias Computation time

ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED ACES DEA BDEA CEAT StoNED

0 % 25 0,229 0,388 
(− 40.9 
%)

0,285 
(− 19.6 
%)

0,734 
(− 68.7 
%)

* − 0,336 − 0,449 − 0,324 0,298 * 6 0 2 1 *

75 0,096 0,278 
(− 65.5 
%)

0,194 
(− 50.7 
%)

1,094 
(− 91.2 
%)

0,379 
(− 74.7 
%)

− 0,211 − 0,353 − 0,230 0,543 − 0,066 36 0 7 9 2

125 0,068 0,269 
(− 74.7 
%)

0,187 
(− 63.7 
%)

1,116 
(− 93.9 
%)

0,209 
(− 67.5 
%)

− 0,175 − 0,329 − 0,207 0,567 − 0,144 73 0 17 15 11

175 0,070 0,255 
(− 72.7 
%)

0,178 
(− 60.8 
%)

1,412 
(− 95.1 
%)

0,136 
(− 48.9 
%)

− 0,170 − 0,302 − 0,185 0,636 − 0,184 867 0 32 30 12

250 0,055 0,240 
(− 77.3 
%)

0,168 
(− 67.4 
%)

1,932 
(− 97.2 
%)

0,119 
(− 54.0 
%)

− 0,142 − 0,277 − 0,165 0,825 − 0,142 2542 0 58 56 16

5 % 25 0,184 0,370 
(− 50.4 
%)

0,284 
(− 35.4 
%)

0,853 
(− 78.5 
%)

* − 0,272 − 0,404 − 0,283 0,377 * 9 0 4 2 *

75 0,073 0,282 
(− 74.0 
%)

0,204 
(− 64.2 
%)

1,249 
(− 94.1 
%)

0,237 
(− 69.1 
%)

− 0,165 − 0,320 − 0,192 0,595 − 0,071 38 0 13 11 3

125 0,049 0,228 
(− 78.7 
%)

0,161 
(− 69.7 
%)

1,174 
(− 95.9 
%)

0,158 
(− 69.3 
%)

− 0,122 − 0,269 − 0,147 0,595 − 0,139 98 0 19 25 22

175 0,055 0,231 
(− 76.4 
%)

0,164 
(− 66.7 
%)

1,591 
(− 96.6 
%)

0,138 
(− 60.5 
%)

− 0,131 − 0,260 − 0,143 0,747 − 0,151 599 0 26 22 9

250 0,041 0,221 
(− 81.4 
%)

0,156 
(− 73.5 
%)

2,121 
(− 98.1 
%)

0,121 
(− 66.0 
%)

− 0,099 − 0,238 − 0,122 0,880 − 0,122 1553 0 42 35 19

10 % 25 0,147 0,324 
(− 54.6 
%)

0,242 
(− 39.2 
%)

0,721 
(− 79.6 
%)

* − 0,232 − 0,366 − 0,234 0,341 * 6 0 2 1 *

75 0,067 0,252 
(− 73.5 
%)

0,180 
(− 62.8 
%)

1,519 
(− 95.6 
%)

0,409 
(− 83.6 
%)

− 0,136 − 0,294 − 0,164 0,693 0,006 27 0 7 6 3

125 0,040 0,216 
(− 81.3 
%)

0,154 
(− 73.8 
%)

1,449 
(− 97.2 
%)

0,139 
(− 71.0 
%)

− 0,092 − 0,249 − 0,125 0,691 − 0,115 73 0 17 15 7

175 0,047 0,214 
(− 78.2 
%)

0,151 
(− 69.0 
%)

1,978 
(− 97.6 
%)

0,136 
(− 65.7 
%)

− 0,095 − 0,231 − 0,111 0,867 − 0,115 587 0 34 33 7

250 0,033 0,200 
(− 83.6 
%)

0,143 
(77.0 
%)

2,294 
(− 98.6 
%)

0,098 
(− 66.4 
%)

− 0,067 − 0,209 − 0,095 0,953 − 0,115 2280 0 52 51 27

20 % 25 0,144 0,289 
(− 50.2 
%)

0,223 
(− 35.2 
%)

0,978 
(− 85.2 
%)

* − 0,198 − 0,324 − 0,200 0,478 * 6 0 2 1 *

75 0,048 0,199 
(− 75.7 
%)

0,146 
(− 66.8 
%)

1,559 
(− 96.9 
%)

0,218 
(− 77.8 
%)

− 0,085 − 0,231 − 0,107 0,722 − 0,046 29 0 8 6 3

125 0,029 0,184 
(− 84.4 
%)

0,135 
(− 78.8 
%)

1,633 
(− 98.2 
%)

0,135 
(− 78.7 
%)

− 0,048 − 0,196 − 0,073 0,785 − 0,075 61 0 15 12 9

175 0,031 0,178 
(− 82.3 
%)

0,131 
(− 76.0 
%)

1,696 
(− 98.1 
%)

0,095 
(− 67.5 
%)

− 0,048 − 0,183 − 0,069 0,785 − 0,103 522 0 22 18 9

250 0,025 0,173 
(− 85.3 
%)

0,127 
(− 80.0 
%)

2,305 
(− 98.9 
%)

0,081 
(− 68.6 
%)

− 0,031 − 0,168 − 0,059 0,953 − 0,108 1486 0 43 35 18

Table 11 
Aggregated results by number of DMUs on the true frontier (Fare et al., 1994).

border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED

0 % − 66.2 % − 52.4 % − 89.2 % − 61.3 % − 68.3 % − 56.7 % − 90.2 % − 65.5 %
5 % − 72.2 % − 61.9 % − 92.6 % − 66.2 % − 72.6 % − 62.6 % − 93.2 % − 70.2 %
10 % − 74.2 % − 64.4 % − 93.7 % − 71.7 % − 73.0 % − 63.8 % − 93.7 % − 65.6 %
20 % − 75.6 % − 67.4 % − 95.5 % − 73.0 % − 75.1 % − 66.8 % − 95.2 % − 71.1 %
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Table 12 
Aggregated results by sample size (Fare et al., 1994).

border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED

25 − 49.0 % –32.3 % − 78.0 % ​ − 46.2 % − 28.8 % − 77.6 % ​
75 − 72.2 % − 61.1 % − 94.5 % − 76.3 % − 74.3 % − 64.9 % − 95.0 % − 72.5 %
125 − 79.8 % − 71.5 % − 96.3 % − 71.6 % − 81.5 % − 74.6 % − 97.2 % − 73.6 %
175 − 77.4 % − 68.1 % − 96.9 % − 60.5 % − 77.9 % − 69.6 % − 97.3 % − 63.8 %
250 − 81.9 % − 74.5 % − 98.2 % − 63.7 % − 81.3 % − 74.5 % − 98.4 % − 62.4 %

Table 13 
Aggregated results by number of DMUs on the true frontier (Perelman and Santín, 2009).

border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED

0 % − 40.2 % +10.1 % − 96.6 % − 47.6 % − 20.1 % +6.8 % − 96.0 % − 39.2 %
5 % − 35.2 % +14.4 % − 97.5 % − 50.5 % − 9.6 % +14.0 % − 96.3 % –32.6 %
10 % –23.7 % +27.3 % − 97.6 % − 47.2 % − 8.6 % +9.0 % − 97.0 % − 30.7 %
20 % − 13.9 % − 24.5 % − 98.2 % − 40.1 % +1.1 % +14.5 % − 97.2 % –22.6 %

Table 14 
Aggregated results by sample size (Perelman and Santín, 2009).

border Not noise Noise
DEA BDEA CEAT StoNED DEA BDEA CEAT StoNED

50 − 43.3 % − 9.3 % − 95.0 % − 43.8 % − 35.8 % − 6.9 % − 93.6 % − 39.2 %
100 − 48.2 % − 14.4 % − 97.5 % − 47.0 % –33.4 % − 6.2 % − 96.6 % − 39.9 %
150 − 28.4 % +20.5 % − 97.8 % − 45.0 % − 14.3 % +9.2 % − 97.1 % − 31.5 %
200 − 16.1 % +42.2 % − 98.2 % − 44.0 % +2.4 % +19.4 % − 97.6 % − 26.2 %
300 − 5.3 % +56.5 % − 98.9 % − 51.9 % +34.7 % +39.9 % − 98.1 % − 19.5 %

Table 15 
Efficiency measures obtained from the empirical example.

Bak Output-oriented radial model Input-oriented radial model Directional Distance Function
ACES 
1

ACES 
2

DEA ACES 
1

ACES 
2

DEA ACES 
1

ACES 
2

DEA

Bank SinoPac 1.14 1.17 1.11 0.86 0.83 0.89 0.07 0.09 0.05
Bank of Kaohsiung 1.38 1.40 1.36 0.63 0.62 0.65 0.19 0.19 0.18
Bank of Panhsin 1.76 1.75 1.75 0.37 0.37 0.37 0.34 0.34 0.34
Bank of Taiwan 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Cathay United Bank 1.40 1.41 1.38 0.69 0.69 0.71 0.17 0.18 0.17
Chang Hwa Bank 1.07 1.11 1.06 0.93 0.90 0.94 0.04 0.05 0.03
China Development 1.00 1.18 1.00 1.00 0.56 1.00 0.00 0.13 0.00
China Trust Bank 1.01 1.00 1.00 0.98 1.00 1.00 0.01 0.00 0.00
Cooperative Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Cosmos Bank 2.26 2.25 2.24 0.23 0.23 0.23 0.52 0.52 0.52
Cota Bank 1.75 1.81 1.64 0.48 0.48 0.49 0.33 0.34 0.28
E. Sun Bank 1.12 1.12 1.12 0.84 0.84 0.84 0.08 0.08 0.08
Entie Bank 1.45 1.55 1.19 0.66 0.61 0.81 0.20 0.24 0.10
Export-Import Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Far Eastern Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
First Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Hua Nan Bank 1.06 1.08 1.05 0.94 0.91 0.94 0.03 0.04 0.03
Hwatai Bank 1.74 1.73 1.73 0.34 0.33 0.35 0.36 0.36 0.35
Industrial Bank of Taiwan 1.58 1.58 1.00 0.72 0.72 1.00 0.26 0.26 0.00
Jih Sun Bank 1.73 1.72 1.63 0.43 0.43 0.48 0.32 0.32 0.28
Land Bank 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Mega Bank 1.01 1.03 1.00 0.98 0.96 1.00 0.01 0.02 0.00
Shin Kong Bank 1.36 1.35 1.35 0.70 0.70 0.70 0.16 0.16 0.16
Sunny Bank 1.45 1.44 1.44 0.59 0.60 0.60 0.22 0.21 0.21
Ta Chong Bank 1.25 1.31 1.14 0.74 0.72 0.86 0.13 0.15 0.07
Taichung Bank 1.33 1.36 1.29 0.70 0.68 0.73 0.16 0.17 0.14
Taipei Fubon Bank 1.00 1.04 1.00 1.00 0.93 1.00 0.00 0.03 0.00
Taishin Bank 1.21 1.25 1.19 0.80 0.76 0.82 0.10 0.12 0.09
Taiwan Business Bank 1.05 1.05 1.03 0.95 0.95 0.97 0.03 0.03 0.02
The Shanghai Bank 1.15 1.18 1.11 0.84 0.80 0.89 0.07 0.09 0.06
Union Bank 1.71 1.70 1.69 0.49 0.50 0.50 0.30 0.29 0.29
Mean 1.29 1.31 1.24 0.77 0.75 0.80 0.13 0.14 0.11
Median 1.15 1.18 1.11 0.83 0.76 0.89 0.08 0.12 0.06
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reduce the error, thus increasing the computational burden.

5.3. Comparative analysis

In this final section on computational experiments, we present a 
comparative analysis of the performance of ACES, DEA, StoNED, CEAT, 
and BDEA across the previously described scenarios. For the ACES 
model, and following the guidance provided in Tables 4 and 5, the re
sults are reported using the following configurations: Approach 1 for 
sample sizes of 50 and 75; Approach 3 for sample sizes of 100 and 125; 
and Approach 4 for sample sizes of 150, 175, 200, 250, and 300. 
Accordingly, Tables 7 and 8 present the results corresponding to the 
Perelman and Santín (2009) design, while Tables 9 and 10 show those 
obtained under the framework of Fare et al. (1994).

The first two columns of Tables 7, 8, 9, and 10 indicate the propor
tion of DMUs located on the true frontier and the total number of DMUs 
evaluated in each scenario. The remaining columns compare the per
formance of the different methodologies in terms of estimation error, 
bias, and computation time. All percentage differences are expressed 
with respect to the competing methods. In this way, a negative value 
denotes that ACES outperforms the corresponding method (i.e., achieves 
lower error), while a positive value indicates a performance deficit. 
Finally, note that results for Fare et al. (1994) and StoNED with a sample 
size of 25 are not reported, as they led to abnormally large values that 
distorted the true performance of the methods and would have under
mined the comparability of the results.

We now detail the performance differences observed across the two 
experimental settings: Perelman and Santín (2009) and Fare et al. 
(1994). In the latter, the results are particularly compelling. ACES out
performs all competing methods in every scenario tested—regardless of 
noise levels or the proportion of efficient units. Error reductions related 
to CEAT exceed 90 % in nearly all cases, while improvements over DEA, 
BDEA, and StoNED range from 19.6 % to 85.3 %. Overall, no systematic 
performance differences are observed between noisy and noise-free 
settings; however, a clear trend emerges whereby the relative advan
tage of ACES increases with both sample size and the proportion of 
DMUs located on the true frontier. Tables 11 and 12 summarize these 
results.

In the case of the Perelman and Santín (2009) scenarios, ACES 
maintains strong performance relative to most benchmark methods. 
Notably, it consistently achieves error reductions exceeding 90 % when 
compared to CEAT. ACES also outperforms StoNED across all config
urations—regardless of noise levels, sample size, or the proportion of 
efficient units—with a larger margin of improvement observed in noise- 
free settings. In the presence of stochastic noise, however, the perfor
mance gap between StoNED and ACES narrows as both the sample size 
and the number of units on the true frontier increase, suggesting that 
StoNED benefits more from larger, noise-contaminated datasets where 
its stochastic structure becomes more effective. A similar pattern is 
observed when comparing ACES to standard DEA. In both noisy and 
noise-free settings, the performance of the two methods converges as the 
sample size and the proportion of efficient units increase. In particular, 
under noise-free conditions, DEA slightly outperforms ACES in scenarios 
with a sample size of 200 or more and when 20 % of the units lie on the 
true frontier. This suggests that DEA may benefit from its nonparametric 
envelopment structure in large, well-populated datasets where the 
frontier is densely represented. Finally, BDEA consistently delivers su
perior results in this class of scenarios. Its advantage over ACES becomes 
more pronounced as the sample size increases and a larger proportion of 
DMUs lie on the true frontier. These findings reinforce the strengths of 
bootstrap-based bias correction in well-populated and frontier-dense 
datasets, where resampling techniques can more effectively capture 
the underlying efficiency structure. Tables 13 and 14 summarize these 
results.

As a concluding remark, it is important to acknowledge two key 
limitations of the ACES methodology, both of which are closely 

interrelated: computational cost and hyperparameter tuning. Although 
ACES demonstrates robust empirical performance, its computational 
burden grows rapidly with the number of DMUs. As evidenced in 
Tables 7–10, the runtime increases at an exponential rate as the sample 
size expands. This effect becomes critical when the number of DMUs 
exceeds 300, even under moderate dimensionality (e.g., four input 
variables and second-degree interactions). The main computational 
bottleneck arises from the number of times model (26) must be solved 
during the forward selection stage, which is directly driven by the size of 
the candidate BF set defined in (6). Consequently, a promising direction 
for future research would be to design more efficient strategies to 
intelligently reduce the size of the candidate set—focusing only on 
potentially viable BFs—thereby improving scalability without compro
mising estimation quality. In addition, the high computational cost 
hinders thorough exploration of the hyperparameter space. Parameters 
such as the error reduction threshold, or the maximum degree of 
interaction play a critical role in balancing model flexibility and over
fitting risk. However, the ability to systematically evaluate different 
configurations through cross-validation is severely limited by runtime 
constraints, particularly in large-scale settings. As such, the develop
ment of faster heuristics or adaptive tuning strategies would be essential 
to unlock the full potential of ACES in practice.

6. An empirical illustration

In this section, we apply a real dataset to demonstrate the perfor
mance of various technical efficiency measures using ACES. The dataset 
includes information on 31 Taiwanese banks for the year 2010, previ
ously analyzed by Juo et al. (2015). The inputs considered are financial 
FUNDS (x1), LABOR (x2), and physical CAPITAL (x3), while the outputs 
are financial INVESTMENTS (y1) and LOANS (y2). All monetary vari
ables are measured in million TWD, with labor measured as the number 
of employees. To improve the numerical stability of the algorithm, all 
monetary variables were rescaled by dividing them by 1,000. A detailed 
discussion of the statistical sources and variable definitions is available 
in Juo et al. (2015).

Regarding the ACES configuration, we tuned three key hyper
parameters: the error reduction threshold ξ ∈ {0.005,0.01}, the 
required improvement of a 3-degree and 2-degree BF over the best 1-de
gree candidate ξ(2) = ξ(3) ∈ {0,0.05,0.10}; and the penalty per knot 
d ∈ {1,2}. Monotonicity and concavity are both imposed in the initial 
stage due to the sample size lower than 50 DMUs. The two best results 
were obtained by the following configurations: ξ = 0.005, ξ(2) = ξ(3) =
0.10 and d = 1 (ACES 1) and (ii) ξ = 0.010, ξ(2) = ξ(3) = 0.05 and d = 1 
(ACES 2).

Table 15 presents the results for different efficiency measures. The 
first column lists the assessed bank. The next three blocks, each with 
three columns, correspond to the efficiency models used in our study: 
the output-oriented radial model (30), the input-oriented radial model 
(31) and the Directional Distance Function (32). For the DDF, the 
directional vector 

(
Gx, Gy

)
=
(
x01, x02, x03, y01, y02

)
is used to evaluate 

each DMU. Finally, each column in these blocks represents a different 
approach: DEA, ACES 1 and ACES 2.

Table 7 demonstrates that DEA consistently produces more opti
mistic efficiency assessments across all evaluated cases. This outcome is 
primarily due to DEA’s omission of the minimum extrapolation princi
ple, which typically positions the production frontier as close as possible 
to the observed data points. Moreover, the results reveal that different 
configurations of ACES (ACES 1 and ACES 2) lead to notably different 
efficiency evaluations. For example, under the radial output approach, 
the mean score in ACES 1 is 1.29, in ACES 2 is 1.31, while in DEA it is 
1.24. Consequently, the density of ACES scores tends to decrease around 
1, indicating fewer units at the efficiency threshold, while it increases 
throughout the rest of the distribution, reflecting a more realistic esti
mation of efficiency.
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7. Conclusions

This paper introduces the Adaptive Constrained Enveloping Splines 
(ACES) as an innovative approach to enhancing the accuracy of effi
ciency analysis in multi-output and multi-input production settings. 
Building on the foundational work of España et al. (2024), ACES ad
vances this framework by implementing a three-stage process that de
livers a more realistic and robust estimation of the production frontier 
compared to conventional methods, at least following out configurations 
of simulated scenarios.

In particular, our computational experiments show that ACES 
consistently outperforms DEA, StoNED, and CEAT across a variety of 
simulated scenarios, especially in terms of mean squared error and bias 
reduction. This advantage is robust across different sample sizes and 
noise conditions. Regarding Bootstrapped DEA, ACES only shows a clear 
improvement in the scenarios based on the design proposed by Fare 
et al. (1994), where the production technology exhibits varying returns 
to scale. These results suggest that while bootstrapping enhances the 
inferential capabilities of DEA, ACES offers a more accurate estimation 
in complex or heterogeneous production environments.

This study also provides guidance on configuring ACES to achieve 
optimal performance. While most hyperparameters can be tuned using 
k-fold cross-validation, as is common in Machine Learning, specific 
recommendations for shaping the estimator during the first stage of the 
method have been detailed. The results indicate that for small sample 
sizes (e.g., 50 units or fewer), it is advantageous to impose both 
monotonicity and concavity constraints to enhance model accuracy. As 
the sample size increases to 100 units or more, applying only one of 
these constraints suffices. For even larger samples (150 units or more), 
the best results are obtained by relying exclusively on the envelopment 
conditions. Furthermore, this paper includes an empirical case study 
demonstrating how to apply various efficiency measures using an ACES 
model.

In conclusion, ACES offers a significant advancement in the field of 
efficiency analysis. The method’s ability to integrate shape constraints 
and handle noisy data makes it particularly valuable in real-world ap
plications where sample sizes and data quality can vary. While ACES 
requires more computational resources than alternative approaches, the 
trade-off is justified by the substantial improvements in accuracy and 
robustness, making it a valuable tool for researchers and practitioners in 
efficiency analysis.
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