Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38615
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEspaña Roch, Víctor Javier-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorBarber i Vallés, Josep Xavier-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-01T09:15:02Z-
dc.date.available2025-12-01T09:15:02Z-
dc.date.created2025-
dc.identifier.citationComputers and Operations Researches_ES
dc.identifier.issn1873-765X-
dc.identifier.issn0305-0548-
dc.identifier.urihttps://hdl.handle.net/11000/38615-
dc.description.abstractData Envelopment Analysis (DEA) is a widely used method for evaluating the relative efficiency of decision-making units, but it often yields overly optimistic efficiency estimates, particularly with small sample sizes. To overcome this limitation, we introduce Adaptive Constrained Enveloping Splines (ACES), a non-parametric technique based on regression splines to accommodate multi-output, multi-input production contexts. ACES employs a three-stage estimation process. In the first stage, optimal output levels are estimated while incorporating essential envelope constraints, with optional monotonicity and/or concavity adjustments as needed. In the second stage, a refinement phase is carried out in which some of the estimates made are replaced by the observed values. Finally, a DEA-type technology is constructed using a new virtual data sample, ensuring adherence to usual shape constraints. Although ACES entails a higher computational cost, it achieves substantially lower mean squared error and bias than alternative methods of the literature across a wide range of simulated scenarios. This improvement is particularly pronounced in settings with complex production structures or heterogeneous returns to scale. This performance is consistent across both noise-free and noisy data environments, underscoring the method’s robustness and accuracy.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent21es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseriesVol. 184es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata envelopment analysises_ES
dc.subjectmulti-output technologieses_ES
dc.subjectoverfittinges_ES
dc.subjectmachine learninges_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadísticaes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisises_ES
dc.titleEstimating production technologies using multi-output adaptive constrained enveloping splineses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.cor.2025.107242es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 Estimating production technologies using multi-output adaptive.pdf

1,67 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.