Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38614
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEspaña Roch, Víctor Javier-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorBarber i Vallés, Josep Xavier-
dc.contributor.authorEsteve, Miriam-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-01T09:14:04Z-
dc.date.available2025-12-01T09:14:04Z-
dc.date.created2024-
dc.identifier.citationEuropean Journal of Operational Research (EJOR)es_ES
dc.identifier.issn1872-6860-
dc.identifier.issn0377-2217-
dc.identifier.urihttps://hdl.handle.net/11000/38614-
dc.description.abstractThis paper introduces a new methodology for the estimation of production functions satisfying some classical production theory axioms, such as monotonicity and concavity, which is based upon the adaptation of an additive version of the machine learning technique known as Multivariate Adaptive Regression Splines (MARS). The new approach shares the piece-wise linear shape of the estimator associated with Data Envelopment Analysis (DEA). However, the new technique is able to surmount the overfitting problems associated with DEA by resorting to generalized cross-validation. In this paper, a computational experience was employed to measure how well the new approach performs, showing that it can reduce the mean squared error and bias of the estimator of the true production function in comparison with DEA and the more recent Corrected Concave Non-Parametric Least Squares (C2NLS) methodology. We also show that the success of the new approach depends on whether or not interactions among variables prevail and the degree of non-additivity of the true production function to be estimated.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent16es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseriesVol. 312es_ES
dc.relation.ispartofseriesnº 2es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata envelopment analysises_ES
dc.subjectadditive modelses_ES
dc.subjectmachine learninges_ES
dc.subjectoverfittinges_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisises_ES
dc.titleEstimating production functions through additive models based on regression splineses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.ejor.2023.06.035es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 Estimating production functions through additive models based.pdf

2,41 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.