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a b s t r a c t 

This paper introduces a new methodology for the estimation of production functions satisfying some 

classical production theory axioms, such as monotonicity and concavity, which is based upon the adapta- 

tion of an additive version of the machine learning technique known as Multivariate Adaptive Regression 

Splines (MARS). The new approach shares the piece-wise linear shape of the estimator associated with 

Data Envelopment Analysis (DEA). However, the new technique is able to surmount the overfitting prob- 

lems associated with DEA by resorting to generalized cross-validation. In this paper, a computational 

experience was employed to measure how well the new approach performs, showing that it can reduce 

the mean squared error and bias of the estimator of the true production function in comparison with 

DEA and the more recent Corrected Concave Non-Parametric Least Squares (C 2 NLS) methodology. We 

also show that the success of the new approach depends on whether or not interactions among variables 

prevail and the degree of non-additivity of the true production function to be estimated. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Data Envelopment Analysis (DEA) ( Charnes et al., 1978 , Banker 

t al., 1984 ) is one of the most widely used techniques for the 

stimation of production functions and efficiency measurement. 

EA relies on the construction of a technology in the space of 

nputs and outputs that satisfies certain classical axioms of pro- 

uction theory (e.g., free disposability and convexity). It is a non- 

arametric data-driven approach with a lot of advantages from 

 benchmarking point of view. Additionally, the treatment of the 

ulti-output multi-input framework is relatively straightforward 

ith DEA, in comparison with other existing methods (see, e.g., 

he Stochastic Frontier Analysis approach by Aigner et al., 1977 ). 

owever, Data Envelopment Analysis has been criticized for its 

on-statistical nature, even being labeled as a pure descriptive tool 

or frontier sample data with little inferential power (exclusively 

ased on the property of consistency) ( Esteve et al., 2020 ). In fact,

EA suffers from an overfitting problem because of the applica- 

ion of the minimal extrapolation principle, which places the esti- 

ator of the production function as close to the dataset as possi- 

le (see Esteve et al., 2020 , Tsionas, 2022 , Valero-Carreras et al., 

022 , and Molinos-Senante et al., 2023 ). In line with this, vari- 

us authors have attempted to correct these deficiencies within 
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he non-parametric approach over the last few decades, introduc- 

ng complementary and alternative methodologies to DEA. For ex- 

mple, Simar and Wilson (1998 , 20 0 0 a) adapted the bootstrapping 

ethodology to the determination of confidence intervals for es- 

imating efficiency scores obtained via DEA. Kuosmanen and John- 

on (2010 , 2017 ) introduced the Corrected Concave Non-parametric 

east Squares (C 

2 NLS), whose objective is to provide a point- 

ise estimation of the theoretical production function that gener- 

ted the observed data sample. However, the problem of estimat- 

ng production functions and efficiency through Machine Learn- 

ng (ML) techniques, taking advantage of their non-parametric and 

ata driven features, has been relatively less addressed in the lit- 

rature. This scarcity of bridges between machine learning and 

roduction function estimation is only justified by the novelty of 

he ML methods and the very recent interest they have aroused 

n all areas of science. However, we must highlight the contribu- 

ions made by Esteve et al. (2020) , Valero-Carreras et al. (2021) and 

lesen and Ruggiero (2022) in this regard. The first authors de- 

ned Efficiency Analysis Trees with the objective of efficiency fron- 

ier estimation; largely built on the adaptation of the Classification 

nd Regression Analysis Trees (CART) approach by Breiman et al. 

1984) . The second authors adapted the machine learning method 

nown as Support Vector Regression by Drucker et al. (1997) to 

e used in the production function estimation setting, satisfying 

sual axioms in microeconomics. Lastly, the third authors intro- 

uced Breiman’s Hinging Hyperplanes function approximation as 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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 flexible estimator of production functions. Other related articles 

re Parmeter and Racine (2013) , Daouia et al. (2016) , Zhu et al.

2018) , Zhu (2020) , Dellnitz (2022) and Esteve et al. (2023) . 

Alternative methodologies devoted to solving the lack of robust- 

ess of the DEA technique are based on the estimation of quantile 

rontiers, instead of the estimation of full frontiers that envelops 

ll the observations. In this context, contributions such as Aragon 

t al. (2005) , Wang and Wang (2013) and Wang et al. (2014) must

e considered. The first authors introduced the idea of using con- 

itional quantiles of a suitable distribution linked to the produc- 

ion process for the construction of a non-parametric estimator of 

he efficient frontier. These ideas were extended in Daouia and 

imar (2007) . The second contribution presents a non-parametric 

mooth multivariate estimation based on kernel quantile regres- 

ion with shape constraints: non-decreasing monotony and con- 

avity. Finally, the third authors introduce a non-parametric shape- 

estricted quantile regression methodology in a two-step approach. 

irst, they identify the fitted values that minimize a loss criterion 

mposing non-decreasing monotonicity and concavity restrictions; 

nd secondly, they build a non-decreasing monotonic and concave 

stimator of the target function. 

This paper is in line with Esteve et al. (2020) , Valero-Carreras et 

l. (2021) and Olesen and Ruggiero (2022) and its main objective is 

o approximate the estimation of production functions to the field 

f Machine Learning. With this purpose in mind, this article shows 

ow an additive version of the technique known as Multivariate 

daptive Regression Splines (MARS) by Friedman (1991) , is adapted 

or the first time in the literature to be used for the estimation 

f production functions. MARS is a non-parametric splines-based 

ethod that extends linear regression models by including nonlin- 

arities and interactions between predictors. This technique is use- 

ul to approximate a target function based on piecewise polyno- 

ials. To do this, the predictors’ domain is divided into a certain 

umber of intervals. The point in the predictor space that splits 

wo of these intervals and that typically identifies a trend change 

n the data patterns is commonly known as a knot. Precisely, the 

erformance of spline-based methods can be limited due to the 

eed to determine, a priori, the position and number of knots, 

 task that can be challenging in high-dimensionality scenarios 

 Friedman et. al, 2001 ). To overcome this weakness, MARS applies 

 recursive partitioning algorithm through an adaptive process that 

chieves an optimal selection of the location of each knot. In 

articular, MARS is grounded on two automatic processes, imple- 

ented as algorithms. The first one is a forward selection process, 

hich splits the predictor space recursively into (non-necessarily 

isjoint) subspaces based on an intensive search of knots through- 

ut the range of the predictors. These knots are used to define a 

et of transformation functions (called basis functions) of the orig- 

nal predictors through splines. The second process is a backward 

emoving mechanism. At each forward step, the spline function 

hat minimizes the training error is added as a new term of the 

odel. Once the set of possible basis functions has been defined 

r the error has not been sufficiently reduced, the backward al- 

orithm sequentially removes those terms that will achieve least 

egradation of the model performance. MARS avoids the problem 

f data overfitting in this way. 

After MARS was introduced by Friedman, various authors have 

uggested modifications to the method to address possible limi- 

ations or to achieve additional properties. Chen et al. (1999) pre- 

ented a quintic function for smoothing the estimator and thus ob- 

ain a MARS model with continuous second derivatives. Bakin et 

l. (20 0 0) developed a new version of MARS, called BMARS, using 

econd-order B-splines instead of truncated linear functions with 

he aim of obtaining numerical stability. Tsai and Chen (2005) ex- 

lored two new variants of MARS: first, applying automatic stop- 

ing rules based on the (adjusted) coefficient of determination in- 
685 
tead of allowing the forward algorithm to grow until the max- 

mum number of basis functions is reached (deleting the back- 

ard step); and, secondly, developing a robust version to de- 

rease the order of the interaction terms. In this way, Tsai and 

hen (2005) managed to reduce the computational cost of MARS 

nd improve its performance against extreme values. Taylan et al. 

2010) provided parameter estimates for generalized partial lin- 

ar models with B-splines using conic quadratic programming that 

ay serve as a basis for further research into MARS. Weber et al. 

2011) suggested a new approach, called CMARS, where the back- 

ard stepwise algorithm is modified by using a penalized resid- 

al sum of squares, as a Tikhonov regularization problem, which 

an be expressed as a conic quadratic programming problem. 

ater, Özmen et al. (2011) and Özmen and Weber (2014) enhanced 

MARS (RCMARS) and MARS (RMARS), respectively, by robust opti- 

ization techniques to deal with data uncertainty (see also Özmen 

t al., 2017 ). A further improvement of MARS on the already for- 

ulated CMARS was developed by Yazici et al. (2015) , who in- 

luded the bootstrap method (BCMARS) to obtain an empirical dis- 

ribution of the fitted parameters to determine their significance. 

oc and Bozdogan (2015) presented another alternative to the con- 

entional backward algorithm by using the information-theoretic 

easure of complexity (ICOMP) for model selection. Martinez et 

l. (2015) provided a convex version of MARS by altering the 

orm of introducing interaction terms and constraining the coeffi- 

ients to eliminate the inherent non-convexity. Additionally, Zhang 

1994) and Koc and Iyigun (2014) modified the forward algorithm 

sing new knot selection procedures. Finally, Murat (2021) pro- 

osed a strategy to detect outliers via the variable selection pro- 

ess in MARS. To do that, a designed matrix is built by adding as 

any dummy variables to the observed data as potential outliers 

re considered. 

In this paper, we introduce an additive version of MARS to es- 

imate production functions. Shape-restricted additive regression 

elongs to the literature devoted to additive models in Statistics. 

ome interesting contributions in this line are: Bacchetti (1989) , 

ho developed additive isotonic (monotonic) multivariate models 

sing an iterative application of the pool-adjacent-violators algo- 

ithm ( Ayer et al. 1955 ); Chen and Samworth (2016) , who pro-

osed a general additive model imposing monotony and/or cur- 

ature constraints on each component of the additive function; 

ammen and Yu (2007) , who presented a backfitting algorithm 

ased on iterative applications of least squares isotone to each ad- 

itive component; and Meyer (2013) , who proposed a more gen- 

ral semiparametric additive constrained regression. In particular, 

n our production context, the additive version of MARS that we 

ropose in this paper requires the fulfilment of classical postulates 

n microeconomics within production theory. Specifically, we re- 

er to the monotonicity and concavity properties of the produc- 

ion function. These conditions represent shape constraints that 

ust be considered when proposing a suitable estimator of the tar- 

et function. The estimator yielded by Data Envelopment Analysis 

s easily determined by Linear Programming in just one step and 

atisfies the previously mentioned shape constraints. Furthermore, 

ur estimator will be a piecewise linear function, as happens with 

he estimator determined through DEA. Accordingly, the technolo- 

ies estimated through the new approach will include the technol- 

gy obtained through DEA as a subset; since DEA satisfies the min- 

mal extrapolation principle (i.e., it fits the data sample as closely 

s possible). It is precisely this principle that causes the overfitting 

roblem occurring in DEA. 

The contributions of this paper are two-fold. First, we introduce 

riedman’s MARS in the production framework and show that this 

echnique is important for non-parametric production function es- 

imation. To do that, we adapt an additive version of MARS for- 

ard and backward algorithms for estimating monotone and con- 
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put) variable. The non-bold face letter x ji , with two subscripts, will denote the j -th 

input value of the i -th observation in the sample, whereas the non-bold face letter 
ave target functions that, additionally, must envelop the data from 

bove. In particular, we prove that the yielded production func- 

ion estimator satisfies all these desired properties. Secondly, we 

heck the validity of the new approach in comparison with stan- 

ard DEA and the recent Corrected Concave Non-Parametric Least 

quares (C 

2 NLS) by Kuosmanen and Johnson (2010 , 2017 ) through 

 simulation experience with six different scenarios. We will show 

hat the new technique performs better than DEA in almost all 

he cases studied. Moreover, when the number of considered in- 

uts is increased, the percentage of improvement is even higher. 

egarding the comparison with respect to Corrected Concave Non- 

arametric Least Squares, the new technique outperforms C 

2 NLS 

n all the scenarios considered except one. Nevertheless, the suc- 

ess of the new approach depends on whether or not there are 

nteraction terms among variables as well as the degree of non- 

dditivity of the true production function to be estimated. At this 

oint, it is worth mentioning that Vidoli (2011) also resorted to 

ARS in a context of production efficiency measurement. From a 

ethodological perspective, Vidoli (2011) introduced an approach 

hat uses two stages. At the first stage, it estimates a conditional 

obust production function, by following the conditional order-m 

pproach. At the second stage, the standard MARS model is es- 

imated on the frontier identified by units that present values of 

fficiency greater than or equal to 1 when the model of the first 

tage is used. Consequently, in that paper, the attention is paid 

o the evaluation of the effects of external variables Z and, addi- 

ionally, the standard MARS model is directly applied. In contrast, 

ur approach is very different. First, we do not focus our atten- 

ion on Z variables. Second, we do not combine methods previ- 

usly introduced in the literature to generate a new one. We tai- 

or MARS to estimate production functions. This means that we 

orce the output predictor to satisfy certain microeconomic pos- 

ulates (shape constraints). In particular, envelopmentness, concav- 

ty and non-decreasing monotonicity. To do that, we add certain 

ew constraints to the optimization model used in each step of 

he standard MARS algorithm. Third, we carried out a complete 

imulation experiment to show the superiority of our approach in 

omparison with DEA and Corrected Concave Non-Parametric Least 

quares, while Vidoli (2011) did not simulate and directly applied 

he approach to an empirical database. 

The paper is organized as follows. Section 2 introduces the 

ackground of the paper. Section 3 shows how an additive version 

f additive MARS has been adapted to provide suitable estimations 

f production functions in microeconomics. Section 4 employs 

omputational experiments with simulated data to corroborate 

ow well the new approach performs. Finally, Section 5 presents 

ur conclusions. 

. Background 

This section offers an overview of key concepts related to 

ata Envelopment Analysis and Multivariate Adaptive Regression 

plines. We will also introduce some notation. 

.1. Data envelopment analysis (DEA) 

Let us consider n units, whose technical efficiency level needs 

o be evaluated. These units (firms, organizations, etc.), called De- 

ision Making Units (DMUs), consume x i = ( x 1 i , . . . , x mi ) ∈ R m + in- 

uts (i.e., resources) to produce y i = ( y 1 i , . . . , y si ) ∈ R s + outputs (i.e., 

oods or services) 1 . The relative efficiency of each DMU compris- 
1 Bold face letters, as x , y or α, will denote vectors throughout the manuscript. 

urthermore, non-bold face letters, as λ, will denote scalars. Additionally, the non- 

old face letter x j , with only one subscript, will denote the j -th (input) variable, 

hile the non-bold face letter y r , with only one subscript, will denote the r -th (out- 

y

t

o

I

e

s

686 
ng the sample is assessed with respect to the so-called produc- 

ion possibility set or technology, which encompasses the set of 

ll combinations that potentially are technically feasible ( x, y ) and, 

roadly speaking, can be expressed as follows: 

 = 

{
( x, y ) ∈ R 

m + s 
+ : x can produce y 

}
(1) 

Certain assumptions are usually made on this set, such as 

ree disposability of inputs and outputs; meaning that if ( x, y ) ∈ 

, then ( x ′ , y ′ ) ∈ ϕ, as long as x ′ ≥ x and y ′ ≤ y, and convexity;

hich implies that if ( x, y ) ∈ ϕ and ( x ′ , y ′ ) ∈ ϕ, then λ( x , y ) +
 1 − λ)( x ′ , y ′ ) ∈ ϕ, ∀ λ ∈ [ 0 , 1 ] (see Färe and Lovell, 1978 ). Deter-

inisticness is another typical assumption made about these sets 

see Banker et al., 1984 ), which guaranties that ( x i , y i ) ∈ ϕ, ∀ i =
 , . . . , n . In other words, the last axiom states that the produc-

ion possibility set contains all the DMUs that belong to the data 

ample, and, graphically, its boundary envelops the observed data 

loud from above. 

Particularly, when s = 1 , this framework is restricted to the 

ey notion of production functions, defined as the maximum pro- 

ucible output for a given input profile. Also, the free disposabil- 

ty assumption, known in this case as monotonicity, implies that 

f is a monotone non-decreasing function, that is, if x ≤ x ′ then 

f (x ) ≤ f ( x ′ ) . Accordingly, the technology is defined as: 

 = 

{
( x , y ) ∈ R 

m +1 
+ : y ≤ f ( x ) 

}
. (2) 

Hereinafter, we will turn our attention to estimating production 

unctions. The existing methodologies for this purpose are either 

arametric or non-parametric. Some of the advantages of the non- 

arametric approach are the non-imposition of a prior functional 

orm on the underlying technology (e.g., a Cobb-Douglas produc- 

ion function) and its ability to deal naturally with multi-output 

cenarios without assigning prior weights to the inputs and out- 

uts. In contrast, the non-parametric approaches also have some 

rawbacks in comparison with their parametric counterparts: low 

obustness to outliers, they are closely related to the problem of 

verfitting, or they do not consider random error when it comes 

o inefficiency measurements. 

Among the non-parametric techniques, Data Envelopment Anal- 

sis (DEA) is one of the most applied methods in practice. DEA 

 Charnes et al. 1978 , Banker et al. 1984 ) is a non-parametric

ethodology for estimating the efficient frontier of ϕ by means 

f the satisfaction of certain postulates: free disposability, convex- 

ty, deterministicness and minimal extrapolation. The principle of 

inimal extrapolation is an additional requirement for selecting 

he most conservative estimator that satisfies free disposability and 

onvexity and that contains the observed data. 

Banker et al. (1984) put forward the DEA estimator of the pro- 

uction possibility set ϕ in the following way: 

 DEA = 

{ 

( x, y ) ∈ R 

m + s 
+ : y r ≤

n ∑ 

i =1 

λi y ri , ∀ r, 

x j ≥
n ∑ 

i =1 

λi x ji , ∀ j, 

n ∑ 

i =1 

λi = 1 , λi ≥ 0 , ∀ i 

} 

. (3) 

Next, we present a graphical example of the DEA estimator of a 

roduction function (see Fig. 1 ). We can observe that DEA is built 

n a piece-wise linear manner and its corresponding estimator is 
 ri , with two subscripts, will denote the r -th output value of the i -th observation in 

he sample. The way of denoting the input-output vector associated with the i -th 

bservation will be ( x i , y i ) , by resorting to bold face letters and only one subscript. 

n the case of Greek letters as the vector α, which will be associated with param- 

ters, each component will be denoted by using non-bold face letters and only a 

ubscript: αp . 
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Fig. 1. An example of a DEA estimate. 
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onotonically non-decreasing. Furthermore, convexity of the pro- 

uction possibility set implies concavity. Finally, the application of 

he minimal extrapolation principle forces DEA to overfit the data 

ample. Consequently, it can effectively describe the observed data 

rom an efficiency evaluation perspective, but it is not able to fur- 

ish an adequate generalization, i.e., a good evaluation of the ac- 

ual production function that is behind the data generation 

2 . 

.2. Multivariate adaptive regression splines (MARS) 

Contrary to the estimation of efficient frontiers, which is based 

n the study of extreme behaviors, traditional regression tech- 

iques in statistics seek to explain or predict mean behaviors. Re- 

ression analysis lies in modeling the dependence of a response 

ariable y and a set of predictor variables x 1 , . . . , x m 

from a data 

ample perturbed by noise. Thus, the underlying data structure can 

e described by the following expression: 

 = f ( x 1 , . . . , x m 

) + ε. (4) 

Here, the first term f ( x 1 , . . . , x m 

) captures the relationship be- 

ween the response variable y and the set of selected predictors 

 = ( x 1 , . . . , x m 

) , whereas ε reflects the variability in y that cannot 

e explained from the selected predictors. Then, the goal here is 

o estimate a mathematical expression 

̂ f ( x 1 , . . . , x m 

) that can ap- 

roximate the target function f ( x 1 , . . . , x m 

) as much as possible. 

he different methods applied for this purpose can be classified as 

arametric and non-parametric. 

The most recognized parametric technique of regression anal- 

sis is Linear Regression. Under its parametric condition, f is as- 

umed to be a linear combination between the response variable 

nd the predictors: f (x ) = 

∑ m 

j=1 γ j x j . The simplicity of this ap- 

roach justifies its widespread use in social science disciplines. 

evertheless, this simplicity is a direct consequence of the re- 

trictive assumptions imposed on the estimated function (e.g., lin- 

ar dependency, homoscedasticity, etc.), which in many cases re- 

ult in very poor fits. In contrast, non-parametric procedures re- 

ect the prior assumptions made about the probability distributions 

f the data and the relationships between them. Consequently, 

he predictor function is made more flexible. From this perspec- 

ive, spline-based methods stand out since they strive to approxi- 

ate a function f based on piecewise polynomials. To do this, the 
2 Data Envelopment Analysis utilizes statistical consistency for approximating the 

nderlying production function ( Simar and Wilson, 20 0 0b ), i.e., the quality of the 

pproximation is exclusively limited to the sample size. 

w

c

687 
omain ( x 1 , . . . , x m 

) ∈ D ⊂ R m is divided into K − 1 contiguous in- 

ervals by K points and a polynomial is estimated in each inter- 

al only from the samples contained therein. The points in the 

nput space that divide two contiguous intervals and that typi- 

ally identify a trend change in the data patterns are commonly 

nown as knots. Precisely, the performance of spline-based meth- 

ds can be limited due to the need to determine, a priori, the po- 

ition and number of knots, a task that can be challenging in high- 

imensionality scenarios ( Friedman et. al, 2001 ). To overcome the 

forementioned weaknesses, there are some techniques that fol- 

ow this methodology built upon the recursive partitioning tech- 

ique through an adaptive process that achieves an optimal selec- 

ion of the knot locations in a data-driven approach. Here, we can 

ention Classification and Regression Trees (CART) by Breiman et 

l. (1984) and Multivariate Adaptive Regression Splines (MARS) by 

riedman (1991) as two relevant non-parametric techniques. While 

ART estimates step functions, MARS fits functions with different 

radients in each interval. See Zhang and Singer (2010) for a com- 

arison between both techniques. 

In particular, MARS is a non-parametric regression technique 

specially designed to deal with high-dimensional scenarios with 

 non-linear relationship and complex interactions in the data. The 

esulting model is continuous with continuous first derivatives and 

s constructed as a linear combination of splines or product of 

plines. MARS can be seen as an extension of the CART technique. 

The model-fitting process in MARS consists of two stepwise 

rocedures: a forward selection and a backward elimination. The 

orward selection divides the input space recursively into new sub- 

paces, not necessarily disjointly, based on an intensive search of 

nots along the range of the predictors. These knots are used to 

ake up a set of transformation functions on the original predic- 

ors (basis functions) through splines. At each forward step, the 

pline function that most reduces the training error is added as 

 new term of the model. Once the number of basis functions pre- 

et by the user has been created, or the error is not sufficiently 

educed, the backward algorithm sequentially deletes those terms 

hose removal implies the least degradation of the model perfor- 

ance. In this manner, overfitting is avoided and an assessment 

nd selection of predictors is made. 

The approximation function can be expressed as: 

ˆ f B ( x ;γ( B ) ) = 

| B | ∑ 

b=1 

γb ( B ) · B b ( x ) , (5) 

here B is the set of terms or basis functions that the model 

ontains, B (x ) ∈ B is a transformation on the original predictors 
b 
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Fig. 2. An example of hinge functions in MARS. 
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 = ( x 1 , . . . , x m 

) , | B | is the cardinal of set B and γ(B ) = ( γ1 (B ) ,

 . . , γ| B | (B )) is a vector of unknown coefficients to be estimated. 

To create the set B during the forward algorithm, Friedman 

1991) proposes implementing a strategy based on selecting a two- 

ided truncated univariate spline of degree 1 as a basis function: 

 

±(
x j − t j 

)
= 

[
±
(
x j − t j 

)]
+ . (6) 

The previous expression can also be described by: 

b + 
(
x j − t j 

)
= 

[
x j − t j 

]
+ = max 

(
0 , x j − t j 

)
, and 

b −
(
x j − t j 

)
= 

[
t j − x j 

]
+ = max 

(
0 , t j − x j 

)
. (7) 

These piecewise linear basis functions can also be called re- 

ected pairs or pairs of hinge functions. The main idea in MARS is 

o create reflected pairs by searching over all combination of pre- 

ictors x j , j = 1 , . . . , m , and all observed values of that predictors

 ji , i = 1 , . . . , n , as a candidate knot. Therefore, the collection of re-

ected pairs is: 

 = 

{ { (
x j − t j 

)
+ , 

(
t j − x j 

)
+ 

} 

| t j ∈ 

{
x j1 , x j2 , . . . , x jn 

}
, j = 1 , . . . , m 

} 

. 

(8) 

Next, we show an example of a pair of hinge functions. 

ig. 2 shows a knot t j in x 1 = 4 . 55 . In this manner, a reflected

air is created from the following expressions: ( 4 . 55 − x 1 ) + and 

 x 1 − 4 . 55 ) + . The former, the left-side hinge function, is canceled 

nder the condition that x 1 ≥ 4 . 55 and it has a negative slope in

he left-side. Conversely, the right-side hinge function is canceled 

or the data that satisfies the condition x 1 ≤ 4 . 55 and it has a pos-

tive slope in the right-side. 

The algorithm is initialized with B 1 (x ) = 1 to set the initial re-

ion to the entire domain. Next, we select the pair of hinge func- 

ions from (8), multiplied by another basis function already en- 

ered in the model (parent term), that most reduce the mean of 

he residual sum of squares in the training sample (the lack-of-fit 

riterion). In the case of considering a single response variable ( y ), 

he criterion is defined as follows: 

OF = 

1 

n 

n ∑ 

i =1 

(
y i − ̂ f B ( x i ;γ( B ) ) 

)2 
. (9) 

At this point, only B 1 (x ) can be chosen as a parent term. Then,

 2 (x ) and B 3 (x ) are formed from the following expressions, re- 

pectively: 1 · ( x j − t j ) + and 1 · ( t j − x j ) + . Notice that B 1 (x ) is a 

-degree basis function, while B 2 (x ) and B 3 (x ) are 1-degree ba- 

is functions. From this point, B 2 (x ) and B 3 (x ) can already be se-

ected as parent terms and therefore can give rise to multivariate 
688 
pline basis functions. Any basis function of, at most, K b degree 

ith K b ≥ 1 , is defined by the following expression: 

 b ( x ) = 

K b ∏ 

k =1 

[
ψ bk ·

(
x j bk 

− t j bk 

)]
+ , ∀ b ∈ B. (10) 

Here ψ bk = ±1 indicates the sense of the hinge function, x j bk 
is 

he j-th predictor variable corresponding to the k -th term in the 

roduct for the b -th basis function, t j bk 
is a value such that t j bk 

∈ 

 x j bk i 
| B b ( x i ) > 0 } and K b is the number of factors that give rise to 

he term B b (x ) . 

This interaction term must necessarily involve different vari- 

bles to avoid producing dependencies on individual variables of a 

igh power that can be very sensitive to extreme values. Thus, to 

ntroduce a new basis function of degree K b , some conditions must 

e met: (i) a basis function of degree K b − 1 must have been pre- 

iously entered in the model and (ii) the same variable cannot ap- 

ear twice in the product. A new basis function can be kept as uni- 

ariate by selecting B 1 (x ) as the parent term. In (10), K b is usually 

imited by a hyperparameter that determines the maximum degree 

llowed in the interaction terms. As a general rule, it is established 

n 2 or 3. In case of considering K b = 1 , ∀ b ∈ B , B 1 (x ) = 1 would

e the only possible parent term and a purely additive model with 

nly univariate basis functions would be made. This is referred as 

he additive version of the MARS model. Under this scenario, by 

buse of notation, we will directly write ψ b , x j b and t j b instead of 

 b1 , x j b1 
and t j b1 

. 

In (5), the parameters in γ(B ) are estimated using the least- 

quares method through the following Quadratic Programming 

odel: 

 ( γ( B ) ) = minimize 
1 

n 

n ∑ 

i =1 

(
y i − ̂ f B ( x i ;γ( B ) ) 

)2 
. (11) 

The forward algorithm creates basis functions while reducing 

he lack-of-fit criterion until a maximum number of terms speci- 

ed by the user is reached. At the end of this first step, the estima-

or should overfit the data and therefore, a backward-pruning pro- 

edure is required to remove those basis functions that do not con- 

ribute significantly to the fit of the model. As Friedman (1991) de- 

cribes, the regions created during the forward selection overlap 

nd the basis function B 1 (x ) cannot be eliminated. These two con- 

itions prevent the discontinuity of the estimator and, in conse- 

uence, it is not necessary to use a complex pruning procedure 

ased on sibling pairs as in CART ( Breiman et al., 1984 ). 

The backward elimination is aimed at reducing the complexity 

f the model built in the first step to avoid overfitting. For this 
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Fig. 3. An example of DEA and an additive version of MARS. 
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urpose, this second step prunes the model by deleting those ba- 

is functions with a lower contribution to the model’s accuracy ac- 

ording to the generalized cross-validation (GCV) criterion ( Golub 

t al. 1979 ). The GCV can be expressed as follows. 

CV ( B ) = 

1 
n 

∑ n 
i =1 

[ 
y i − ˆ f B ( x i ;γ( B ) ) 

] 2 
[ 

1 − ˜ C ( B ) 
n 

] 2 , (12) 

here ˜ C (B ) is a cost complexity function defined as: 

˜ 
 ( B ) = C ( B ) + d · χ. (13) 

Here, C(B ) is the number of parameters in 

ˆ f B , the hyperparam- 

ter d (normally set between 2 and 4) penalizes the complexity of 

he model and χ is the number of linearly independent basis func- 

ions in 

ˆ f B . Hence, the backward algorithm creates a set of | B | − 1

ub-models by removing basis functions one by one and selects the 

odel, including that resulting from the forward procedure, that 

inimizes (12) . 

Finally, a graphical representation of the additive version of the 

ARS estimator is shown (see Fig. 3 ). Notice that both techniques, 

EA and the additive version of MARS, share the construction 

f the corresponding estimator by piecewise-linear functions (as 

ong as K b is set to 1). Nevertheless, it is obvious that the additive 

ARS estimator needs certain adaptations to fulfill the usual 

xioms of microeconomics. A first line of action should be based 

n getting additive MARS to envelop the data instead of dealing 

ith the average of the response variable. Another requirement is 

o get the additive MARS estimator to satisfy the properties of free 

isposability (monotonicity in this single-response scenario) and 

oncavity. 

. The new approach to estimate production functions 

In this section, we propose a new method based on an adap- 

ation of the additive MARS model for estimating production func- 

ions that satisfy the usual axioms of microeconomics through a 

ata-driven process that does not assume any particular distribu- 

ion on the data noise and technical inefficiency. The new method 

ill generate a piecewise linear function as an estimate resembling 

he estimator obtained through DEA. On the other hand, this new 

pproach has an advantage over DEA in that it deals with over- 

tting through a pruning procedure based on generalized cross- 

alidation ( Golub et al. 1979 ) as in Friedman (1991) . 
689 
Throughout the following sections, we review what modifica- 

ions are necessary to impose on the original algorithm of the ad- 

itive version of MARS to make the estimator ˆ f satisfy certain clas- 

ical axioms of production theory: (A1) if x ≤ x ′ , then 

̂ f (x ) ≤ ̂ f ( x ′ )
nd (A2) concavity. Postulate A1 refers to monotonicity and states 

hat the greater amount of resources consumed by a firm, the 

reater the ability to produce more or at least the same output; 

hile postulate A2 refers that ˆ f is a concave function, which is re- 

ated to the convexity of the production possibility set ϕ in (2). 

dditionally, ˆ f must be a function that envelops the observations 

rom above. 

To continue, we present two subsections showing how to adapt 

he forward and backward algorithms associated with the additive 

ersion of MARS. 

.1. The forward algorithm 

First, we introduce the two key elements that need to be 

dapted for the standard additive version of the MARS model to 

e used in the world of production function estimation: 

1. Limiting the maximum degree of the basis functions (BFs) in 

(10) to generate a purely additive MARS model. That is, the 

new technique only allows univariate BFs. 

2. Adding additional constraints to the programming model de- 

fined in (11) to estimate a function that envelops the data 

from above and satisfies both monotonicity and concavity. 

We start with point 1. The satisfaction of the axioms of mono- 

onicity (A1) and concavity (A2) can only be eased by setting a 

aximum degree of 1 in the construction of the set of BFs in (10). 

s a result, the interaction of variables (multivariate BFs) is not 

llowed. This limitation might compromise the predictive ability 

f the algorithm in some odd scenarios with continuity beyond 

he first derivative that cannot be fitted through 1-degree splines 

 Eilers and Marx, 2010 ); however, it provides a notable advantage 

n computational terms. It is easy to see that the most computa- 

ionally demanding piece of code is the fitting of the parameters 

hrough the minimization problem in (11). The total computation 

ime is proportional to the sample size, the number of predictors 

nd the level of interactions between variables. Hence, by restrict- 

ng K b to 1, the computational cost is significantly reduced. We can 

ame another advantage derived from this restriction. The estima- 

or linked to this additive model is piecewise linear, thus enabling 

 direct comparison with the DEA estimator. In fact, somehow, the 
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+ β
ew model could be reinterpreted as a pruned version of DEA that 

vercomes its overfitting problem. 

Regarding point 2, the specific adaptations of the additive MARS 

odel to satisfy axioms A1 and A2 are gradually detailed through- 

ut the text. From Fig. 3 , it can be seen that MARS was not

esigned by Friedman (1991) to deal specifically with produc- 

ion frontier estimation in microeconomics. Obviously, some well- 

nown techniques for estimating coefficients in regression analy- 

is, such as standard Least Squares or the Cholesky decomposi- 

ion, cannot be used since they are aimed at estimating the mean 

alue of the response variable. As an alternative to (11), we pro- 

ose a linear optimization program that includes some extra con- 

traints to capture the estimation of maximum trends instead of 

ean trends and that ensure that the postulates of monotonic- 

ty (A1) and concavity (A2) described above are fulfilled. In this 

ay, a natural adaptation of the additive version of MARS algo- 

ithm to the discipline of Efficiency Analysis is achieved, although 

t should be noted that, the addition of new constraints to the 

ptimization model to be solved entails a higher computational 

ost. 

Let us recall the process of introducing a new pair of BFs in the 

tandard MARS. The algorithm must select an input variable j, j = 

 , . . . , m , a knot t j ∈ { x j1 , x j2 , . . . , x jn } and a parent basis function

ith the aim of reducing the lack-of-fit criterion in the training 

ample. Nevertheless, the maximum degree of a BF is restricted to 

 in our approach, thus the parent term will always be B 1 (x ) = 1 .

ow, for the sake of convenience, we rewrite the estimator (5) in 

erms of reflected pairs instead of basis functions. Accordingly, our 

stimator is as follows: 

ˆ f P 
(
x ; τ0 ( P ) , α( P ) , β( P ) 

)
= τ0 ( P ) + 

| P | ∑ 

p=1 

h p 

(
x ; α( P ) , β( P ) 

)
= τ0 ( P ) + 

| P | ∑ 

p=1 

[ 
αp ( P ) ·

(
x j p −t j p 

)
+ + βp ( P ) ·

(
t j p −x j p 

)
+ 

] 
, (14) 

here P is the set of reflected pairs at a certain generic 

tage of the forward procedure (following the sequential or- 

er in which the variables were introduced in the algorithm), 

 ( x j p − t j p ) + , ( t j p − x j p ) + } denotes the p-th reflected pair incorpo- 

ated into the model and α(P ) and β(P ) are vectors of unknown

oefficients to be estimated. 

Henceforth, we deal with describing the requirements neces- 

ary to comply with the conditions set out in point 2 above. The 

rst property we satisfy refers to the enveloping nature of the 

roduction function, ̂ f , estimated through the new approach. This 

ondition implies that, given ( x i , y i ) , 
̂ f ( x i ) must necessarily be 

bove the observed output y i . Mathematically, this is expressed 

s y i ≤ ˆ f ( x i ) for each learning sample i, i = 1 , . . . , n . Therefore, it

eems natural to force the estimator to meet the same association. 

t this point, the linear optimization program to be solved under 

he new approach would be as follows: 

minimize 
ε , τ0 ( P ) , α( P ) , β( P ) 

n ∑ 

i =1 

ε i 

subject to 

τ0 (P ) + 

| P | ∑ 

p=1 

[ 
αp ( P ) ·

(
x j p − t j p 

)
+

690 
minimize 
ε , τ0 ( P ) , α( P ) , β( P ) 

n ∑ 

i =1 

ε i 

subject to 

τ0 (P ) + 

| P | ∑ 

p=1 

[ 
αp ( P ) ·

(
x j p − t j p 

)
+ + βp ( P ) ·

(
t j p − x j p 

)
+ 

] 
−ε i = y i , i = 1 , . . . , n, (15 . 1) , 

ε i ≥ 0 , i = 1 , . . . , n, (15 . 2) (15) 

here the new variable ε i , which measures the error term, 

s defined as ε i = 

ˆ f ( x i ) − y i = τ0 (P ) + 

∑ | P| 
p=1 

[ αp (P ) · ( x j p − t j p ) + +
p (P ) · ( t j p − x j p ) + ] − y i . Note that the error term ε i must be posi- 

ive by constraint 15.2, and hence, there is no error compensation. 

onsequently, we can resort to Linear Programming rather than 

uadratic Programming. 

This new estimator is equivalent to the additive (forward) MARS 

odel, but now estimating a frontier that envelops the data cloud 

nstead of estimating the mean behavior of the data thanks to con- 

traints (15.1) and (15.2) . However, non-monotonic estimators can 

e given by the model (15) , thereby not satisfying axiom A1. Like- 

ise, concavity of the estimator is not guaranteed, which would be 

 contradiction in terms of axiom A2. We can observe these facts 

n Fig. 4 where an enveloping but not monotonic nor concave esti- 

ator gives rise to a non-convex technology (the shaded area). 

The idea behind the satisfaction of non-decreasing monotonic- 

ty (A1) and concavity (A2) of the production function estimation 

ith the new method is quite simple. The sum of non-decreasing 

onotonic functions yields a non-decreasing monotonic function 

nd, in the same way, the sum of concave functions produces a 

oncave function. Therefore, the strategy to follow consists of deal- 

ng with each reflected pair separately ensuring both properties, 

o that later, they are also satisfied by the estimator ̂ f through the 

um of non-decreasing monotonic concave functions. 

Next, we establish sufficient conditions to impose monotonicity 

nd concavity on the estimator under the new approach. In par- 

icular, as we mentioned above, we exploit the well-known result 

hat states that the sum of several monotonically non-decreasing 

nd concave functions is monotonically non-decreasing and con- 

ave. Consequently, the corresponding proofs of Propositions 1 and 

 are both straightforward. 

roposition 1. If αp (P ) ≥ 0 and βp (P ) ≤ 0 , p = 1 , . . . , | P | , then the

unction in (14) is monotonically non-decreasing. 

roposition 2. If αp (P ) + βp (P ) ≤ 0 , p = 1 , . . . , | P | , then the func-

ion in (14) is concave. 

Therefore, by adding these new three constraints resulting from 

roposition 1 and Proposition 2 to model (15), the Linear Program- 

ing model to solve during the forward selection procedure must 

e the following: 

p ( P ) ·
(
t j p − x j p 

)
+ 

] 
− ε i = y i , i = 1 , . . . , n, (16 . 1) 

ε i ≥ 0 , i = 1 , . . . , n, (16 . 2) 

− αp ( P ) − βp ( P ) ≥ 0 , p = 1 , . . . , | P | , (16 . 3) 

αp ( P ) ≥ 0 , p = 1 , . . . , | P | , (16 . 4) 

− βp ( P ) ≥ 0 , p = 1 , . . . , | P | , (16 . 5) 

. (16) 
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Fig. 4. A possible estimate obtained from model (15) . 

Fig. 5. An example of the frontier estimates linked to DEA and the new approach after the forward process. 
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The constraints (16.1) and (16.2) correspond to the restrictions 

f model (15) . Moreover, constraints (16.3) and (16.4)-(16.5) are in- 

luded to guarantee the satisfaction of concavity and monotonic- 

ty, respectively. With this, the estimator linked to model (16) ful- 

lls the conditions set out in points 1 and 2 (at the beginning of 

his section). However, it still suffers from overfitting as DEA. Obvi- 

usly, the accuracy at this point is fairly good since the piece-wise 

inear estimator closely approximates the data sample (low bias). 

nfortunately, this estimator depends excessively on the training 

ata (high variance) and therefore makes it difficult to yield a good 

eneralization performance. These are also common features in the 

EA approach. Precisely, in Fig. 5 , it can be seen that DEA, which

xhibits a noticeable overfitting by construction, and the new ap- 

roach before pruning-back, provide almost identical estimators. 

An additional difference between our method and DEA is that 

he new approach has a family of hyperparameters that can be 

uned to obtain alternative (forward) production frontiers for the 

ame database. Some of these parameters have already been used 

uring the description of our algorithm. The degree of overfitting 

f the model can be controlled by the maximum number of pairs 

o be incorporated into the model (η) and the minimum reduced 

rror rate for the addition of two new BFs (ξ ) . Moreover, the com-
691 
utational speed and the shape of the piecewise linear estimator 

an be regulated by (i) minspan (L ) , i.e., the minimum number 

f observations between two adjacent eligible knots, (ii) endspan 

 Le ) , i.e., the minimum number of observations before the first and 

fter the last knot and (iii) the procedure to create the grid of eligi- 

le knots, which can be based on the observed values (as the orig- 

nal approach) or created ad-hoc by the user. In Fig. 6 we can see

ow different hyperparameterizations of the algorithm give rise to 

rontiers that approximate to a greater or lesser extent the training 

ample used. Note that, although the production frontier resulting 

rom the new approach after executing the forward procedure will 

ot be the final one, its shape, however, will considerably condi- 

ion the final production function resulting from the backward al- 

orithm. For example, a function too far from the data could lead 

o an underfitted model, while a function too close to the training 

ample could prevent optimal correction using the backward algo- 

ithm. In this case, Friedman (1991) recommends that back prun- 

ng discards around half of the BFs created during the first stage. 

s a general rule, and depending on the sample size, resampling 

echniques such as hold out (commonly known as training and test 

plit) or cross-validation can be used to select the optimal set of 

yperparameters. 
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Fig. 6. An example of two alternative frontier estimates linked to the new approach after the forward process. 

Algorithm 1 

Forward procedure for the new approach. 
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Finally, the steps that must be carried out in the forward proce- 

ure to determine a frontier estimate linked to the new approach 

re shown in Algorithm 1 , where P ∗ represents the set of reflected 

airs at the end of the forward procedure. 

.2. The backward algorithm 

Overfitting is a key threat to the reliability of a statistical model. 

he new technique, as in the original MARS algorithm, makes in- 

ensive use of the response variable to define the set of BFs. This 

act, in general, drastically reduces the bias of the model, but at 
692 
he same time increases its variance. It means that the model may 

memorize” the training data and, in consequence, not be able 

o provide a good response to a new sample. This is a common 

roblem in machine learning algorithms. Conveniently, these algo- 

ithms always include certain procedures to accomplish the model 

o generalize correctly. For our purpose, we suggest applying our 

pproach along with a pruning procedure to suitably evaluate pro- 

uction frontiers. To do so, the standard approach performed by 

riedman (1991) in MARS based on generalized cross-validation 

ill be slightly adapted to meet the requirements of the frontier 

nalysis framework. 

The forward stepwise procedure ends with the creation of a set 

f paired BFs, in addition to the constant basis function B 1 (x ) = 1

intercept term). This model generally suffers from overfitting (see 

ig. 5 ). Consequently, a process of backward elimination is initi- 

ted (see Section 2.2 ) where those BFs that do not contribute sig- 

ificantly to the improvement of the model’s performance are dis- 

arded. In other words, it attempts to promote an optimal balance 

etween the complexity and the precision of the model. Naturally, 

his approach breaks the reflected pair structure used during the 

rst stage of the algorithm. Now, only some pairs of BFs will be 

ept in the model, while others will be totally or partially elimi- 

ated. With this, each BF can be in three different states: paired, 

eft-side unpaired and right-side unpaired. In this way, function (5) 

an be redefined as follows: ̂ f B 
(
x ; τ0 ( B ) , α ( B ) , β( B ) , δ( B ) , ω ( B ) 

)
= τ0 ( B ) + 

| H | ∑ 

a =1 

h a 

(
x ; α s ( B ) , β( B ) 

)
+ 

| G | ∑ 

c=1 

g c 
(
x ; δ( B ) 

)
+ 

| R | ∑ 

e =1 

r e ( x ; ω ( B ) ) , (17) 

here B = { B 1 (x ) } ∪ H ∪ G ∪ R is the set of BFs that the model

ontains, being H the set of reflected pairs, G the set of right- 

ide unpaired BFs and R the set of left-side unpaired BFs. In 

his way, h a ( x ;α( B ) , β( B ) ) = αa (B ) ( x j a − t j a ) + + βa (B ) ( t j a − x j a ) + 
s the a -th reflected pair in H, g c ( x ; δ(B ) ) = δc (B ) ( x j c − t j c ) + is

he c-th right-side unpaired basis function in G and r e ( x ;ω(B ) ) = 

 e (B ) ( t j e − x j e ) + is the e -th left-side unpaired basis function in R . 

Next, we state the conditions necessary to guarantee that the 

unction (17) satisfies monotonicity and concavity. The proof is 

ased on the well-known result that establishes that the sum of 
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Fig. 7. An example of alternative production frontiers derived from the new approach. 
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Table 1 

Simulated scenarios. 

Scenario # Inputs Target function f (x ) 

1 1 ln ( x 1 ) + 3 

2 1 3 + x 0 . 5 1 + ln ( x 1 ) 

3 2 0 . 1 x 1 + 0 . 1 x 2 + 0 . 3 ( x 1 x 2 ) 
0 . 5 

4 3 0 . 1 x 1 + 0 . 1 x 2 + 0 . 1 x 3 + 0 . 3 ( x 1 x 2 x 3 ) 
1 / 3 

5 2 0 . 1 x 1 + 0 . 1 x 2 + 0 . 3 ( x 1 x 2 ) 
1 / 3 

6 3 0 . 1 x 1 + 0 . 1 x 2 + 0 . 1 x 3 + 0 . 3 ( x 1 x 2 x 3 ) 
1 / 4 
on-decreasing and concave functions is also a non-decreasing and 

oncave function. 

roposition 3. If αa (B ) + βa (B ) ≤ 0 , αa (B ) ≥ 0 , βa (B ) ≤ 0 , a =
 , . . . , | H| , δc (B ) = 0 , c = 1 , . . . , | G | , and ω e (B ) ≤ 0 , e = 1 , . . . , | R | ,
hen the function (17) is a non-decreasing and concave function. 

Under the assumptions of the above result, notice that if 

c (B ) = 0 , c = 1 , . . . , | G | , then g c ( x ; δ(B ) ) = 0 , c = 1 , . . . , | G | . Conse-

uently, g c ( x ; δ( B ) ) , c = 1 , . . . , | G | , disappears from expression (17) .

From Proposition 3 , we confirm the need to modify the way 

f proceeding described in Friedman (1991) . The backward algo- 

ithm will be identical to that described in Section 2.2 . except for 

he manner of selecting a BF to be removed. While in the stan- 

ard MARS any BF is a candidate to be eliminated, in the case of 

he new approach, we must introduce two conditions that must be 

onsidered before selecting a BF: 

1- Right-side BFs can only be removed from reflected pairs. 

2- Left-side BFs can only be removed when appearing unpaired. 

In this way, it is ensured that g c ( x ; δ(B ) ) = 0 , ∀ c = 1 , . . . , | G | . 
Now, we can establish the Linear Programming model to solve 

uring the backward stage. 

minimize 
 , τ0 ( B ) , α( B ) , β( B ) , ω ( B ) 

n ∑ 

i =1 

ε i 

ubject to 

0 ( B ) + 

| H | ∑ 

a =1 

[ 
αa ( B ) 

(
x j a i − t j a 

)
+ + βa ( B ) 

(
t j a − x j a i 

)
+ 

] 
+ 

| R | ∑ 

e =1 

[ 
ω e ( B ) 

(
t

−

Model (18) only includes a new constraint, (18.6) , with respect 

o the forward model (16) , which makes it possible to ensure that 

he left-side unpaired BFs also comply with the monotonicity and 

oncavity properties. 

The steps that must be carried out in the backward procedure 

f the new approach are shown in Algorithm 2 . 

Finally, Fig. 7 shows the effect of the pruning procedure on the 

unction obtained after the forward algorithm. For this, two dif- 

erent values of the hyperparameter d have been used ( d = 1 and 
693 
 j e i 

)
+ 

] 
− ε i = y i , i = 1 , . . . , n, (18 . 1) 

ε i ≥ 0 , i = 1 , . . . , n, (18 . 2) 
 ) − βa ( B ) ≥ 0 , a = 1 , . . . , | H | (18 . 3) 

αa ( B ) ≥ 0 , a = 1 , . . . , | H | (18 . 4) 
− βa ( B ) ≥ 0 , a = 1 , . . . , | H | (18 . 5) 

. (18) 

 = 2 ). The quantity d in (13) represents a cost for each BF that

s maintained in the model. Larger values for d lead to a smaller 

umber of knots being placed and thereby a model less prone to 

uffer from overfitting. Again, the optimal value of d can be opti- 

ally selected by hold-out or cross-validation. 

. Computational experience 

Here we describe the simulation results that allow the compar- 

son of the following methods: the frontier estimate derived from 

lgorithm 2 , DEA and C 

2 NLS. Thus, an assessment of these tech- 

iques carried out under six different simulated scenarios is pre- 

ented. These same six scenarios were defined by Kuosmanen and 

ohnson (2010) . Their descriptions appear in Table 1 . 

Scenarios 1 and 2 represent a single-input case, while scenarios 

-6 represent multi-input cases with interaction of variables (two 

nd three inputs with different curvatures for the target function). 

or all scenarios, we tested three data set sizes of 50, 100 and 150 

bservations. The input data were randomly sampled from a uni- 

orm distribution Uni [ 1 , 10 ] , independently for each input and firm. 

ubsequently, a random inefficiency term u ∼ | N(0 , 0 . 4) | was com-
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Algorithm 2 

Backward procedure for the new approach. 
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3 We also tried to find out the execution time required to get the results by ap- 

plying the new method when a standard desktop PC (Personal Computer) is used in 

the case of analyzing the most complex scenario (four variables and 150 observa- 

tions). In this case, the experiments were conducted on a PC with 1.80 GHz Intel (R) 

Core (TM) i7-8550U CPU with 12 Gigabyte of RAM and a Windows 11 Home 64 bits 

operating system. We executed 100 trials, obtaining that the mean time required by 

our technique was 62 seconds (approximately one minute). 
uted. Then, the output used for the analysis was calculated as y = 

f (x ) − u . We ran 100 trials ( l = 1 , . . . , 100 ) for each combination of

cenario and data set size to investigate the relative performance of 

he methods. Performance of each method was evaluated by two 

tandard criteria: the mean squared error (MSE) and the bias. The 

SE statistic is defined as 
∑ 100 

l=1 

∑ n 
i =1 ( ̂

 f ( x l 
i 
) − f ( x l 

i 
) ) 

2 
/ 100 n , while 

he bias is computed as 
∑ 100 

l=1 

∑ n 
i =1 ( ̂

 f ( x l 
i 
) − f ( x l 

i 
) ) / 100 n , where x l 

i 
enotes the i -th input profile corresponding to the l-th trial. At 

his point, let us highlight two details. First, in these two formu- 

as, f ( x l 
i 
) denotes the value of the true frontier while ̂ f ( x l 

i 
) rep-

esents its estimation for the input profile x l 
i 
. Second, in the for- 

ula corresponding to the bias, it is more usual to resort to the 

bsolute value of the differences. However, at this point, we fol- 

ow Kuosmanen and Johnson (2010) , from which we mimic the 

imulation scenarios with the objective of comparing the results, 

here the authors defined the bias in this way to identify the 

sign’ of the deviation: negative ( ̂  f < f ) or positive ( ̂  f > f ) . In par-

icular, the accuracy of the estimates in quadratic terms is mea- 

ured by the MSE, allocating the same weight to negative and pos- 

tive deviations. Therefore, MSE will be used as a model evalua- 

ion metric. The bias statistic, instead, indicates whether the esti- 

ated frontier ̂ f systematically underestimates ( bias < 0 ) or over- 

stimates ( bias > 0 ) the true frontier f . We note that positive and 

egative deviation terms cancel out when averaged over the obser- 

ations and simulation runs; however, it does give useful informa- 

ion about the behavior of the estimated frontier with respect to 

he target frontier. Then, following Kuosmanen and Johnson (2010) , 
694 
e analyze the model’s performance in two ways: the magnitude 

MSE) and the direction (bias) of the error. 

Additionally, we determined the best set of hyperparameters 

or each trial by a training (70%) and test (30%) split due to the 

igh computational cost involved in cross-validation. In our con- 

ext, the hyperparameters are η, ξ , L , Le and d. The grid of avail-

ble knots was the observed data as in Friedman (1991) . We fixed 

he maximum number of pairs to be incorporated into the model 

η) and thereby we only control the growth of the forward algo- 

ithm through ξ . From our own experience, we set the following fi- 

ite value space for each hyperparameter: ξ ∈ { 0 . 1 , 0 . 01 , 0 . 001 , 0 } , 
 ∈ { −2 , − 1 } , Le ∈ { −2 , − 1 } and d ∈ { 1 , 2 , 3 } . The −1 and −2

alues in L and Le correspond to the minspan and endspan ap- 

roaches in Friedman (1991) and Zhang (1994) , respectively. These 

alues generated a total of 48 different hyperparameter combina- 

ions for the proposed simulations. 

Table 2 records the mean, the standard deviation (in brackets) 

nd the median of the best-performing hyperparameters in our 

imulations. The results are detailed below. The best value of the 

hyperparameter is highly dependent on the sample size. Specifi- 

ally, it reveals an inverse relationship between the number of ob- 

ervations in the sample and the optimal value of ξ . The value 0.1 

oes not seem to allow the (forward) model to grow enough and 

herefore does not provide promising results. In this case, it seems 

easonable to search for optimal values near 0.01 (above and be- 

ow) since values around 0.001 represent an increase in computa- 

ional cost that does not necessarily improve the results obtained. 

egarding the hyperparameters L and Le, a certain general ten- 

ency is observed for the value −1 (Friedman approach) in case 

f the minspan. The Friedman and Zhang approaches provide very 

imilar results in case of the endspan, therefore, they can be cho- 

en interchangeably. Regarding the hyperparameter d, the value 3 

ould be discarded since they do not usually perform well. Like- 

ise, value 1 seems to give the best results. 

Table 2 also shows the computation time associated with the 

ew technique. It should be noted that the computing time spent 

an be seen as a drawback of the new approach in compari- 

on with other techniques such as DEA, which is directly based 

n Linear Programming. The experiments were conducted on a 

orkstation with 2.3 GHz Intel(R) Xeon(R) CPU E5-2650 v3 with 

0 cores, 62 Gigabyte of RAM and an Ubuntu18.04.5 LTS op- 

rating system. The code was implemented in R version 3.6.3. 

he code is hosted in an open-source repository on GitHub at 

ttps://github.com/Victor-Espana/MLFrontiers. To solve the opti- 

ization problems (16) and (18), the Rglpk package ( Theussl and 

ornik, 2019 ) was utilized. Concerning the execution time, the re- 

ults illustrate an exponential relationship with the sample size. 

oreover, this situation becomes even more critical when the 

umber of inputs is also increased 

3 . 

Table 3 examines the performance of the new technique, DEA 

nd C 

2 NLS grounded on the MSE criterion. The first two columns 

ndicate the background and the number of observations. The next 

our columns state the MSE means for the methods under con- 

ideration. Finally, the last four columns show the variation in the 

SE statistic (and its sign) between the new technique versus DEA 

nd C 

2 NLS. The results obtained show, in general, how the ap- 

roach we have proposed present significant improvement over 

he DEA and the C 

2 NLS techniques. First of all, it should be men-
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Table 2 

Optimal hyperparameters for the new approach. 

Scenario 

(#inputs) 

Sample size Hyperparameter Execution time 

(in seconds) 
ξ L Le d

Mean (std) Median Mean (std) Median Mean (std) Median Mean (std) Median 

1 (1) 50 0.059 (0.048) 0.100 -1.33 (0.47) -1 -1.47 (0.50) -1 1.45 (0.64) 1 0.32 

100 0.025 (0.040) 0.001 -1.36 (0.48) -1 -1.35 (0.48) -1 1.42 (0.70) 1 2.73 

150 0.011 (0.027) 0.001 -1.40 (0.49) -1 -1.25 (0.44) -1 1.24 (0.55) 1 6.93 

2 (1) 50 0.043 (0.048) 0.010 -1.29 (0.46) -1 -1.40 (0.49) -1 1.48 (0.75) 1 0.46 

100 0.014 (0.031) 0.001 -1.45 (0.50) -1 -1.37 (0.49) -1 1.24 (0.53) 1 3.44 

150 0.004 (0.011) 0.001 -1.42 (0.50) -1 -1.38 (0.49) -1 1.22 (0.46) 1 9.16 

3 (2) 50 0.045 (0.047) 0.010 -1.37 (0.49) -1 -1.61 (0.49) -2 1.84 (0.85) 2 1.05 

100 0.038 (0.046) 0.010 -1.36 (0.48) -1 -1.48 (0.50) -1 1.64 (0.84) 1 4.69 

150 0.028 (0.041) 0.010 -1.21 (0.41) -1 -1.32 (0.47) -1 1.65 (0.82) 1 11.02 

4 (3) 50 0.034 (0.045) 0.010 -1.42 (0.50) -1 -1.52 (0.50) -2 1.92 (0.87) 2 2.16 

100 0.018 (0.034) 0.001 -1.34 (0.48) -1 -1.51 (0.50) -2 1.42 (0.68) 1 14.11 

150 0.016 (0.030) 0.010 -1.32 (0.47) -1 -1.55 (0.50) -2 1.47 (0.73) 1 36.72 

5 (2) 50 0.046 (0.047) 0.010 -1.31 (0.46) -1 -1.51 (0.50) -2 1.97 (0.87) 2 1.00 

100 0.042 (0.047) 0.010 -1.24 (0.43) -1 -1.34 (0.48) -1 1.56 (0.77) 1 4.73 

150 0.034 (0.044) 0.010 -1.27 (0.45) -1 -1.33 (0.47) -1 1.50 (0.70) 1 12.12 

6 (3) 50 0.036 (0.046) 0.010 -1.27 (0.45) -1 -1.60 (0.49) -2 2.07 (0.77) 2 2.32 

100 0.024 (0.039) 0.010 -1.40 (0.49) -1 -1.39 (0.49) -1 1.56 (0.74) 1 12.50 

150 0.020 (0.037) 0.001 -1.40 (0.49) -1 -1.36 (0.48) -1 1.43 (0.69) 1 39.46 

Table 3 

Relative performance of estimation methods linked to MSE. 

Scenario (#inputs) Sample size Mean squared error Variation in MSE (%) 

The new approach DEA C 2 NLS The new approach vs DEA The new approach vs C 2 NLS 

1 (1) 50 0.007 0.010 0.006 -30.45 + 14.38 

100 0.003 0.005 0.005 -44.59 -46.78 

150 0.002 0.003 0.004 -35.71 -55.33 

2 (1) 50 0.007 0.011 0.009 -32.99 -15.64 

100 0.004 0.006 0.006 -41.08 -36.82 

150 0.002 0.003 0.006 -36.81 -63.08 

3 (2) 50 0.018 0.030 0.013 -39.29 + 38.52 

100 0.018 0.018 0.009 -03.39 + 86.79 

150 0.018 0.012 0.010 + 51.86 + 76.32 

4 (3) 50 0.018 0.065 0.024 -71.86 -23.77 

100 0.016 0.046 0.017 -65.11 -06.80 

150 0.015 0.035 0.015 -56.08 + 01.12 

5 (2) 50 0.008 0.029 0.014 -72.39 -41.79 

100 0.004 0.015 0.008 -73.57 -53.96 

150 0.003 0.011 0.007 -75.04 -60.51 

6 (3) 50 0.012 0.060 0.022 -80.30 -46.59 

100 0.006 0.040 0.016 -84.84 -60.52 

150 0.004 0.030 0.014 -86.23 -69.50 
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ioned that all the techniques are affected by the increase in di- 

ensionality, since the mean MSE increases when the number of 

nputs increases. However, this does not occur in the same pro- 

ortion for all methods. While DEA increases the MSE by 646% by 

ncreasing the number of inputs from 1 to 3 (scenarios 1 and 2 ver-

us scenarios 4 and 6), in the case of our approach, this increase 

s between 3 and 4 times lower. Therefore, it seems that the new 

echnique is more robust than DEA to the curse of dimensional- 

ty. The improvements of the new approach over DEA ranged from 

.39% to 86.23%. Scenario 3 is the most unfavorable for our ap- 

roach, especially in the case of 150 samples. It is worth noting 

hat the additive nature of our model can be a limitation depend- 

ng on the degree of curvature of the true production function con- 

idered. The production functions associated with scenarios 3 and 

 are the same except for the value of the exponent corresponding 

o the interaction term between input 1 and input 2. While our 

esults are poor in scenario 3, they are really good in the case of 

cenario 5. The reason is the value of the exponent. We executed 

n extra computational experience following the same mathemat- 

cal expression for the production function as that used in scenar- 
695 
os 3 and 5 but playing with different values for the exponent, be- 

ween 0.1 and 1. Our results showed that the new approach seems 

o work well up to a certain value of the exponent (a threshold 

f around 0.5) for which the performance drops off sharply re- 

ardless of the sample size. Anyway, although our model is addi- 

ive in nature, which represents a weakness from a methodologi- 

al point of view when the true production function has interac- 

ions between variables, we have shown using the simulation sce- 

arios taken from Kuosmanen and Johnson (2010) (which contains 

 non-additive scenarios with different degrees of curvature) that 

he new method can outperform the other two techniques consid- 

red (DEA and C 

2 NLS) even in non-additive situations. Indeed, con- 

iderable improvements are observed in the rest of the scenarios 

nalysed, especially in 4, 5 and 6. Regarding C 

2 NLS, the improve- 

ent in results is also quite substantial. In this case, the improve- 

ent percentages of the new technique with respect to C 

2 NLS is 

etween 6.80% and 69.50%. The conclusions reached are very sim- 

lar to those described above. C 

2 NLS provides better results for all 

ample sizes in scenario 3, while in the rest of the cases, our tech- 

ique performs better. In the 1-input scenarios (1 and 2), a greater 
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Table 4 

Relative performance of estimation methods linked to bias. 

Scenario (#inputs) Sample size Bias 

The new approach DEA C 2 NLS 

1 (1) 50 -0.036 -0.070 + 0.006 

100 -0.021 -0.044 + 0.005 

150 -0.017 -0.035 + 0.004 

2 (1) 50 -0.031 -0.074 + 0.009 

100 -0.024 -0.051 + 0.006 

150 -0.018 -0.037 + 0.006 

3 (2) 50 + 0.002 -0.124 + 0.013 

100 + 0.034 -0.092 + 0.009 

150 + 0.049 -0.072 + 0.010 

4 (3) 50 -0.019 -0.199 + 0.024 

100 + 0.010 -0.162 + 0.017 

150 + 0.032 -0.140 + 0.015 

5 (2) 50 -0.042 -0.120 + 0.014 

100 -0.021 -0.081 + 0.008 

150 -0.012 -0.067 + 0.007 

6 (3) 50 -0.055 -0.190 + 0.022 

100 -0.029 -0.149 + 0.016 

150 -0.012 -0.124 + 0.014 
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ercentage of improvement is observed when the number of units 

n the sample increases. However, this situation is completely the 

pposite in scenario 4. 

Table 4 reports the results based on bias. The structure of Table 

 is the same as Table 3 but does not include the last 2 columns.

e first start by describing DEA’s performance. The production 

unction estimated by DEA is consistently below the true produc- 

ion function as reflected by all negative values in its bias. In this 

ay, DEA is able to provide a correct description of the data but 

ails to provide an adequate estimate of the underlying function. 

hat is, DEA can be considered a purely descriptive technique with 

ittle inferential power, except in the case of invoking the con- 

istency property of the DEA estimator. Furthermore, as was the 

ase with the MSE statistic, a decreasing trend is also observed 

approaching zero) as the number of observations in the sample 

ncreases. As for the rest of the techniques, certain patterns are 

hown in the results obtained. The new technique tends to under- 

stimate the true production function and also provide better re- 

ults (in terms of bias) when the sample size increases. Neverthe- 

ess, the new approach overestimates the true production function 

n scenario 3. However, since the new technique does aim to es- 

imate the underlying function, the presence of both positive and 

egative deviations is natural. On the other hand, C 

2 NLS tends to 

verestimate the true production function, and in this case, the 

evel of bias seems to increase as the sample size grows in some 

cenarios such as 3 and 4. 

Next, we provide the contour plot for different levels corre- 

ponding to several functions: the Cobb-Douglas production func- 

ion f ( x 1 , x 2 ) = x 0 . 4 
1 

· x 0 . 1 
2 

, the DEA estimate and the estimate based

n the new approach (see Fig. 8 ). Fig. 8 illustrates the fact that

EA usually fails to adequately approach the theoretical production 

unction, i.e., the Cobb-Douglas function in this case. In contrast, 

he fig. also shows that the new method is capable of achieving 

etter approximations. 

The statement that DEA (and related non-parametric envelop- 

ent techniques such as Free Disposal Hull, FDH) suffers from an 

verfitting problem is very recent in the literature. From a statisti- 

al point of view, overfitting is a problem that happens when you 

ave a perfect fit of your model on the data sample. When this 

ccurs, the model unfortunately cannot perform accurately against 

nseen data, which is usually related to a high generalization er- 

or ( Hastie et al., 2009 ). Standard machine learning techniques aim 

o identify the actual function that lies behind the Data Generat- 

ng Process (see for example Vapnik, 1998 ). If the precise equi- 
696 
ibrium is struck between the ability of the model to learn any 

ataset without error and the accuracy achieved on a particular 

ataset (the observations), then an appropriate estimation of the 

nderlying function to be estimated will be attained. This ability 

o learn any possible dataset is linked to the notion of the gener- 

lization error (also called out-of-sample error in the literature). In 

he non-parametric framework, the theoretical generalization error 

f a model cannot be calculated in general, but it may be approx- 

mated by resorting to test samples or cross-validation. In partic- 

lar, in the context of efficiency measurement, envelopment tech- 

iques as DEA, which place the efficient frontier as close as possi- 

le to the data sample due to the minimal extrapolation principle, 

an correctly measure efficiency for a particular set of observations 

DMUs) following a sample-specific-based evaluation, but, at the 

ame time, suffer from overfitting. The DEA model is too close to 

he DMUs when the (underlying) efficient frontier is actually lo- 

ated above the data cloud. This last feature limits its inferential 

apability, at least for small data samples, a point that is impor- 

ant when one of the objectives of the study is stating something 

bout the underlying function behind the Data Generating Process 

hat produced the observations. One direct impact of this overfit- 

ing problem on the results determined through DEA is that an 

mportant part of the DMUs under evaluation are shown as tech- 

ically efficient (i.e., the corresponding technical score equals one, 

hen in fact they are not located on the underlying production 

rontier) and, in general, DEA scores are overly optimistic. Some 

ery recent approaches have highlighted the overfitting problem 

uffered by FDH and DEA (see Esteve et al., 2020 , Tsionas, 2022 ,

alero-Carreras et al., 2022 , and Molinos-Senante et al., 2023 ). In 

his section, we have showed how DEA and the new approach esti- 

ate the target function f (x ) through 

ˆ f (x ) , given an input profile

 . Next, and as a complement, we are going to show how close the

stimates ˆ f ( x i ) are to the observed output level for each DMU i , 

.e., y i , i = 1 , . . . , n . Our objective is to illustrate how DEA overfits

he data in comparison with the new approach. In the consid- 

red single-output production setting, a natural (output-oriented) 

echnical efficiency score can be defined as the ratio φi = 

ˆ f ( x i ) / y i , 

hich compares these two quantities, i.e., the estimate ˆ f ( x i ) and 

he observation y i . For this reason, and with the objective of illus- 

rating the overfitting problem suffered by DEA in comparison with 

he new approach, we calculated the mean and variance of the ef- 

ciency score ( φi ) determined by both Data Envelopment Analysis 

nd the additive model based on regression splines (see Table 5 ). 

he results demonstrate that the DEA estimates are closer to the 
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Fig. 8. Contour plot comparing the performance of the new approach with DEA in an example with two inputs and one output. 

Table 5 

Comparison of efficiency scores between the new approach and DEA. 

Scenario (#inputs) Sample size The new approach DEA Mean difference 

Mean Std. dev. Mean Std. dev. 

1 50 1.069 0.010 1.064 0.013 0.54% 

100 1.072 0.007 1.068 0.008 0.37% 

150 1.074 0.006 1.072 0.007 0.28% 

2 50 1.043 0.006 1.039 0.008 0.41% 

100 1.047 0.005 1.044 0.006 0.29% 

150 1.048 0.004 1.046 0.004 0.23% 

3 50 1.211 0.105 1.122 0.103 8.90% 

100 1.227 0.061 1.146 0.064 8.16% 

150 1.222 0.036 1.150 0.036 7.15% 

4 50 1.123 0.033 1.047 0.033 7.57% 

100 1.136 0.020 1.064 0.023 7.18% 

150 1.150 0.037 1.079 0.039 7.09% 

5 50 1.272 0.120 1.194 0.123 7.82% 

100 1.336 0.258 1.245 0.279 9.08% 

150 1.315 0.284 1.249 0.289 6.62% 

6 50 1.140 0.029 1.066 0.031 7.42% 

100 1.156 0.023 1.090 0.024 6.59% 

150 1.164 0.021 1.102 0.023 6.27% 
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bserved outputs than those provided by the new approach (with 

fficiency scores closer to one on average in the case of DEA). How- 

ver, it should be noted that the differences in terms of overfitting 

etween the new approach and DEA in the contexts of one and 

wo inputs are somewhat minor. By contrast, when we increase 

he number of inputs being evaluated, we observe differences by 

p to 9% on average. For example, with 5 inputs and 100 units, 

EA suggests that the output produced could be increased by 25%, 

hile the new approach suggests that the level of output should 

ugment by 34% (on average). Note that we have already demon- 

trated that the new method yields estimates closer to the under- 

ying production function than DEA (with smaller bias and mean 

quared error in general). In this way, it seems that, in the simu- 

ations, DEA presents a better fit of the frontier model on the data 

ample in comparison with the additive model based on regression 

plines but at the expense of having worse estimates of the under- 

ying Data Generating Process (the actual production function). 
697 
. Conclusions and lines for future work 

This paper has built a new bridge between production theory 

nd machine learning in the literature. So far, these two fields 

ave been growing exponentially but side by side and separately. 

owever, the new tendency shows a prospective integration of 

he efficiency analysis world into the context of machine learning 

see, for example, the recent papers by Esteve et al., 2023 , Esteve 

t al., 2020 , Valero-Carreras et al., 2021 , or Olesen and Ruggiero, 

022 ). In our case, this has allowed us to introduce a new tech- 

ique for estimating production functions through splines and re- 

ursive partitioning. The new technique endows an additive ver- 

ion of the Multivariate Adaptive Regression Splines (MARS) tech- 

ique by Friedman (1991) with shape constraints to estimate a sur- 

ace that envelops all the data from above and satisfies monotonic- 

ty and concavity. These features are linked to the traditional non- 

arametric Data Envelopment Analysis (DEA). 
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DEA and the new approach share some characteristics, such 

s their non-parametric nature and the piece-wise linear shape 

f their estimators. Nevertheless, while DEA suffers from overfit- 

ing by construction due to the axiom of minimal extrapolation 

ssumed in the classical literature, the new approach overcomes 

his problem through a pruning procedure based on generalized 

ross-validation. 

Furthermore, the efficacy of the new approach was investigated 

hrough a computational experience. Results have shown that our 

roposal generally outperforms DEA and C 

2 NLS with respect to the 

ean squared error (MSE). In this way, we have seen that the im- 

rovement ranges from 3.39% to 86.23% (with a mean value of 

8.77%) regarding DEA and from 6.80% to 69.50% (with a mean 

alue of 20.22%) in the case of C 

2 NLS. As for the bias, we note that

ur proposal systematically underestimates the true frontier and 

hat its value usually decreases when the sample size increases. 

The main limitation of the new approach is related to method- 

logical issues. Our model is additive in nature, what can limit its 

erformance when the (unknown) true production function to be 

stimated presents interactions between the inputs of the problem. 

owever, although our model is additive, which a priori represents 

 weakness, we have shown using the simulation scenarios taken 

rom Kuosmanen and Johnson (2010) that the new method can 

utperform DEA and C 

2 NLS even in non-additive situations. Nev- 

rtheless, in practice, these results will depend on the type of in- 

eraction among variables and the degree of curvature, things that 

ill be unknown by researchers. Therefore, in the case of deal- 

ng with real-world databases, we suggest applying several differ- 

nt methodologies to get a battery of results in such a way that 

esearchers may make a robust decision about the estimation of 

he production function. In this way, our method could be seen 

s a complement to conventional approaches in the field of tech- 

ical efficiency measurement. Unlike other methods, our approach 

s based on machine learning techniques, which could represent 

 fresh perspective when estimating production functions of firms 

nd public institutions is the focus. 

Additionally, our approach allows the estimation of production 

unctions in many different contexts: banking, education, manage- 

ent, public policy and so on. Moreover, rather than estimating 

 production function, we could use revenue, expressed in mone- 

ary terms, as a response variable and the inputs as covariables and 

pply our approach to determine the corresponding revenue func- 

ion. Furthermore, the production frontier estimation is a problem 

losely related to the edge estimation problem (see, for example, 

aouia et al. 2016 ). In this regard, see Korostelev and Tsybakov 

1993) for the literature therein on the edge estimation problem 

ithin the area of image reconstruction. Other possible applica- 

ions of our approach appear, for example, in medicine, where the 

robability of contracting a certain disease depends monotonically 

n certain variables, or in environmental pollution where mono- 

onicity applies to the ozone level as a function of the inversion 

ase temperature ( Croux et al., 2012 ). Another recent area to be 

pproached through our methodology is the inverse problem for 

amilton-Jacobi equations and semiconcave envelopes (see, for ex- 

mple, Esteve and Zuazua, 2020 ). 

We end this section by introducing several lines of future re- 

earch. First, we suggest the possibility of extending this novel 

pproach to the context of multi-output production. Another re- 

arkable line of study is related to determining a ranking of im- 

ortance of covariables to the context of production frontiers. To 

o this, the approach described in Friedman (1991) based on the 

ANOVA decomposition” could be adapted. Additionally, we re- 

orted to the spline basis functions for the construction of the 

stimator. However, other suitable basis functions could be used 

s long as they can adapt to the framework of production fron- 

ier estimation. In terms of methodological development, there is 
698 
ne point to be considered related to how to determine techni- 

al inefficiency through different efficiency measures. Another line 

f research is linked to solving the weakness of the computational 

ost associated with the new technique. To do this, we could take 

dvantage of parallel computing to reduce the execution time, es- 

ecially sensitive in multi-sample scenarios. Moreover, it could be 

nteresting to know if the estimator converges to the true pro- 

uction function when n → ∞ and to extend the model to the 

ase of considering interaction among the inputs. These two lines 

eem to open up an interesting avenue for researching for the fu- 

ure. Furthermore, the incorporation and treatment of uncertainty 

n the model could be considered as another possible remarkable 

esearch line. In this regard, see a survey of previous contributions 

n uncertainty and Data Envelopment Analysis in Wen (2015) . An 

bvious research line to be followed would be applying the new 

pproach to real databases in a variety of empirical contexts. Fi- 

ally, we could also resort to the adaptation of the smoothing pro- 

edures introduced by Friedman (1991) to get a smoothed version 

f the estimate of the production function. This estimate should 

atisfy the postulates of monotonicity and concavity, something 

hat is not trivial and deserves future study. 
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