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This paper introduces a new methodology for the estimation of production functions satisfying some
classical production theory axioms, such as monotonicity and concavity, which is based upon the adapta-
tion of an additive version of the machine learning technique known as Multivariate Adaptive Regression
Splines (MARS). The new approach shares the piece-wise linear shape of the estimator associated with
Data Envelopment Analysis (DEA). However, the new technique is able to surmount the overfitting prob-
lems associated with DEA by resorting to generalized cross-validation. In this paper, a computational
experience was employed to measure how well the new approach performs, showing that it can reduce
the mean squared error and bias of the estimator of the true production function in comparison with
DEA and the more recent Corrected Concave Non-Parametric Least Squares (C2NLS) methodology. We
also show that the success of the new approach depends on whether or not interactions among variables
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prevail and the degree of non-additivity of the true production function to be estimated.
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1. Introduction

Data Envelopment Analysis (DEA) (Charnes et al., 1978, Banker
et al, 1984) is one of the most widely used techniques for the
estimation of production functions and efficiency measurement.
DEA relies on the construction of a technology in the space of
inputs and outputs that satisfies certain classical axioms of pro-
duction theory (e.g., free disposability and convexity). It is a non-
parametric data-driven approach with a lot of advantages from
a benchmarking point of view. Additionally, the treatment of the
multi-output multi-input framework is relatively straightforward
with DEA, in comparison with other existing methods (see, e.g.,
the Stochastic Frontier Analysis approach by Aigner et al., 1977).
However, Data Envelopment Analysis has been criticized for its
non-statistical nature, even being labeled as a pure descriptive tool
for frontier sample data with little inferential power (exclusively
based on the property of consistency) (Esteve et al., 2020). In fact,
DEA suffers from an overfitting problem because of the applica-
tion of the minimal extrapolation principle, which places the esti-
mator of the production function as close to the dataset as possi-
ble (see Esteve et al., 2020, Tsionas, 2022, Valero-Carreras et al.,
2022, and Molinos-Senante et al., 2023). In line with this, vari-
ous authors have attempted to correct these deficiencies within
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the non-parametric approach over the last few decades, introduc-
ing complementary and alternative methodologies to DEA. For ex-
ample, Simar and Wilson (1998, 2000a) adapted the bootstrapping
methodology to the determination of confidence intervals for es-
timating efficiency scores obtained via DEA. Kuosmanen and John-
son (2010, 2017) introduced the Corrected Concave Non-parametric
Least Squares (C2NLS), whose objective is to provide a point-
wise estimation of the theoretical production function that gener-
ated the observed data sample. However, the problem of estimat-
ing production functions and efficiency through Machine Learn-
ing (ML) techniques, taking advantage of their non-parametric and
data driven features, has been relatively less addressed in the lit-
erature. This scarcity of bridges between machine learning and
production function estimation is only justified by the novelty of
the ML methods and the very recent interest they have aroused
in all areas of science. However, we must highlight the contribu-
tions made by Esteve et al. (2020), Valero-Carreras et al. (2021) and
Olesen and Ruggiero (2022) in this regard. The first authors de-
fined Efficiency Analysis Trees with the objective of efficiency fron-
tier estimation; largely built on the adaptation of the Classification
and Regression Analysis Trees (CART) approach by Breiman et al.
(1984). The second authors adapted the machine learning method
known as Support Vector Regression by Drucker et al. (1997) to
be used in the production function estimation setting, satisfying
usual axioms in microeconomics. Lastly, the third authors intro-
duced Breiman’s Hinging Hyperplanes function approximation as
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a flexible estimator of production functions. Other related articles
are Parmeter and Racine (2013), Daouia et al. (2016), Zhu et al.
(2018), Zhu (2020), Dellnitz (2022) and Esteve et al. (2023).

Alternative methodologies devoted to solving the lack of robust-
ness of the DEA technique are based on the estimation of quantile
frontiers, instead of the estimation of full frontiers that envelops
all the observations. In this context, contributions such as Aragon
et al. (2005), Wang and Wang (2013) and Wang et al. (2014) must
be considered. The first authors introduced the idea of using con-
ditional quantiles of a suitable distribution linked to the produc-
tion process for the construction of a non-parametric estimator of
the efficient frontier. These ideas were extended in Daouia and
Simar (2007). The second contribution presents a non-parametric
smooth multivariate estimation based on kernel quantile regres-
sion with shape constraints: non-decreasing monotony and con-
cavity. Finally, the third authors introduce a non-parametric shape-
restricted quantile regression methodology in a two-step approach.
First, they identify the fitted values that minimize a loss criterion
imposing non-decreasing monotonicity and concavity restrictions;
and secondly, they build a non-decreasing monotonic and concave
estimator of the target function.

This paper is in line with Esteve et al. (2020), Valero-Carreras et
al. (2021) and Olesen and Ruggiero (2022) and its main objective is
to approximate the estimation of production functions to the field
of Machine Learning. With this purpose in mind, this article shows
how an additive version of the technique known as Multivariate
Adaptive Regression Splines (MARS) by Friedman (1991), is adapted
for the first time in the literature to be used for the estimation
of production functions. MARS is a non-parametric splines-based
method that extends linear regression models by including nonlin-
earities and interactions between predictors. This technique is use-
ful to approximate a target function based on piecewise polyno-
mials. To do this, the predictors’ domain is divided into a certain
number of intervals. The point in the predictor space that splits
two of these intervals and that typically identifies a trend change
in the data patterns is commonly known as a knot. Precisely, the
performance of spline-based methods can be limited due to the
need to determine, a priori, the position and number of knots,
a task that can be challenging in high-dimensionality scenarios
(Friedman et. al, 2001). To overcome this weakness, MARS applies
a recursive partitioning algorithm through an adaptive process that
achieves an optimal selection of the location of each knot. In
particular, MARS is grounded on two automatic processes, imple-
mented as algorithms. The first one is a forward selection process,
which splits the predictor space recursively into (non-necessarily
disjoint) subspaces based on an intensive search of knots through-
out the range of the predictors. These knots are used to define a
set of transformation functions (called basis functions) of the orig-
inal predictors through splines. The second process is a backward
removing mechanism. At each forward step, the spline function
that minimizes the training error is added as a new term of the
model. Once the set of possible basis functions has been defined
or the error has not been sufficiently reduced, the backward al-
gorithm sequentially removes those terms that will achieve least
degradation of the model performance. MARS avoids the problem
of data overfitting in this way.

After MARS was introduced by Friedman, various authors have
suggested modifications to the method to address possible limi-
tations or to achieve additional properties. Chen et al. (1999) pre-
sented a quintic function for smoothing the estimator and thus ob-
tain a MARS model with continuous second derivatives. Bakin et
al. (2000) developed a new version of MARS, called BMARS, using
second-order B-splines instead of truncated linear functions with
the aim of obtaining numerical stability. Tsai and Chen (2005) ex-
plored two new variants of MARS: first, applying automatic stop-
ping rules based on the (adjusted) coefficient of determination in-
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stead of allowing the forward algorithm to grow until the max-
imum number of basis functions is reached (deleting the back-
ward step); and, secondly, developing a robust version to de-
crease the order of the interaction terms. In this way, Tsai and
Chen (2005) managed to reduce the computational cost of MARS
and improve its performance against extreme values. Taylan et al.
(2010) provided parameter estimates for generalized partial lin-
ear models with B-splines using conic quadratic programming that
may serve as a basis for further research into MARS. Weber et al.
(2011) suggested a new approach, called CMARS, where the back-
ward stepwise algorithm is modified by using a penalized resid-
ual sum of squares, as a Tikhonov regularization problem, which
can be expressed as a conic quadratic programming problem.
Later, Ozmen et al. (2011) and Ozmen and Weber (2014) enhanced
CMARS (RCMARS) and MARS (RMARS), respectively, by robust opti-
mization techniques to deal with data uncertainty (see also Ozmen
et al.,, 2017). A further improvement of MARS on the already for-
mulated CMARS was developed by Yazici et al. (2015), who in-
cluded the bootstrap method (BCMARS) to obtain an empirical dis-
tribution of the fitted parameters to determine their significance.
Koc and Bozdogan (2015) presented another alternative to the con-
ventional backward algorithm by using the information-theoretic
measure of complexity (ICOMP) for model selection. Martinez et
al. (2015) provided a convex version of MARS by altering the
form of introducing interaction terms and constraining the coeffi-
cients to eliminate the inherent non-convexity. Additionally, Zhang
(1994) and Koc and lyigun (2014) modified the forward algorithm
using new knot selection procedures. Finally, Murat (2021) pro-
posed a strategy to detect outliers via the variable selection pro-
cess in MARS. To do that, a designed matrix is built by adding as
many dummy variables to the observed data as potential outliers
are considered.

In this paper, we introduce an additive version of MARS to es-
timate production functions. Shape-restricted additive regression
belongs to the literature devoted to additive models in Statistics.
Some interesting contributions in this line are: Bacchetti (1989),
who developed additive isotonic (monotonic) multivariate models
using an iterative application of the pool-adjacent-violators algo-
rithm (Ayer et al. 1955); Chen and Samworth (2016), who pro-
posed a general additive model imposing monotony and/or cur-
vature constraints on each component of the additive function;
Mammen and Yu (2007), who presented a backfitting algorithm
based on iterative applications of least squares isotone to each ad-
ditive component; and Meyer (2013), who proposed a more gen-
eral semiparametric additive constrained regression. In particular,
in our production context, the additive version of MARS that we
propose in this paper requires the fulfilment of classical postulates
in microeconomics within production theory. Specifically, we re-
fer to the monotonicity and concavity properties of the produc-
tion function. These conditions represent shape constraints that
must be considered when proposing a suitable estimator of the tar-
get function. The estimator yielded by Data Envelopment Analysis
is easily determined by Linear Programming in just one step and
satisfies the previously mentioned shape constraints. Furthermore,
our estimator will be a piecewise linear function, as happens with
the estimator determined through DEA. Accordingly, the technolo-
gies estimated through the new approach will include the technol-
ogy obtained through DEA as a subset; since DEA satisfies the min-
imal extrapolation principle (i.e., it fits the data sample as closely
as possible). It is precisely this principle that causes the overfitting
problem occurring in DEA.

The contributions of this paper are two-fold. First, we introduce
Friedman’s MARS in the production framework and show that this
technique is important for non-parametric production function es-
timation. To do that, we adapt an additive version of MARS for-
ward and backward algorithms for estimating monotone and con-
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cave target functions that, additionally, must envelop the data from
above. In particular, we prove that the yielded production func-
tion estimator satisfies all these desired properties. Secondly, we
check the validity of the new approach in comparison with stan-
dard DEA and the recent Corrected Concave Non-Parametric Least
Squares (C2NLS) by Kuosmanen and Johnson (2010, 2017) through
a simulation experience with six different scenarios. We will show
that the new technique performs better than DEA in almost all
the cases studied. Moreover, when the number of considered in-
puts is increased, the percentage of improvement is even higher.
Regarding the comparison with respect to Corrected Concave Non-
parametric Least Squares, the new technique outperforms C2NLS
in all the scenarios considered except one. Nevertheless, the suc-
cess of the new approach depends on whether or not there are
interaction terms among variables as well as the degree of non-
additivity of the true production function to be estimated. At this
point, it is worth mentioning that Vidoli (2011) also resorted to
MARS in a context of production efficiency measurement. From a
methodological perspective, Vidoli (2011) introduced an approach
that uses two stages. At the first stage, it estimates a conditional
robust production function, by following the conditional order-m
approach. At the second stage, the standard MARS model is es-
timated on the frontier identified by units that present values of
efficiency greater than or equal to 1 when the model of the first
stage is used. Consequently, in that paper, the attention is paid
to the evaluation of the effects of external variables Z and, addi-
tionally, the standard MARS model is directly applied. In contrast,
our approach is very different. First, we do not focus our atten-
tion on Z variables. Second, we do not combine methods previ-
ously introduced in the literature to generate a new one. We tai-
lor MARS to estimate production functions. This means that we
force the output predictor to satisfy certain microeconomic pos-
tulates (shape constraints). In particular, envelopmentness, concav-
ity and non-decreasing monotonicity. To do that, we add certain
new constraints to the optimization model used in each step of
the standard MARS algorithm. Third, we carried out a complete
simulation experiment to show the superiority of our approach in
comparison with DEA and Corrected Concave Non-Parametric Least
Squares, while Vidoli (2011) did not simulate and directly applied
the approach to an empirical database.

The paper is organized as follows. Section 2 introduces the
background of the paper. Section 3 shows how an additive version
of additive MARS has been adapted to provide suitable estimations
of production functions in microeconomics. Section 4 employs
computational experiments with simulated data to corroborate
how well the new approach performs. Finally, Section 5 presents
our conclusions.

2. Background

This section offers an overview of key concepts related to
Data Envelopment Analysis and Multivariate Adaptive Regression
Splines. We will also introduce some notation.

2.1. Data envelopment analysis (DEA)

Let us consider n units, whose technical efficiency level needs
to be evaluated. These units (firms, organizations, etc.), called De-
cision Making Units (DMUs), consume X; = (Xqj, ..., Xp;) € RT in-
puts (i.e., resources) to produce y; = (y4;, - ... Ysi) € R}, outputs (ie,
goods or services)'. The relative efficiency of each DMU compris-

1 Bold face letters, as x, y or &, will denote vectors throughout the manuscript.
Furthermore, non-bold face letters, as A, will denote scalars. Additionally, the non-
bold face letter x;, with only one subscript, will denote the j-th (input) variable,
while the non-bold face letter y,, with only one subscript, will denote the r-th (out-
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ing the sample is assessed with respect to the so-called produc-
tion possibility set or technology, which encompasses the set of
all combinations that potentially are technically feasible (x,y) and,
broadly speaking, can be expressed as follows:

(1)

Certain assumptions are usually made on this set, such as
free disposability of inputs and outputs; meaning that if (x,y)
¢, then (¥',y’) € ¢, as long as ¥ >x and y' <y, and convexity;
which implies that if (x,¥) €@ and (¥',y) € ¢, then A(x,y) +
(1-X)(®,y) e, VA e[0,1] (see Fire and Lovell, 1978). Deter-
ministicness is another typical assumption made about these sets
(see Banker et al., 1984), which guaranties that (x;,y;) € ¢, Vi=
1,...,n. In other words, the last axiom states that the produc-
tion possibility set contains all the DMUs that belong to the data
sample, and, graphically, its boundary envelops the observed data
cloud from above.

Particularly, when s =1, this framework is restricted to the
key notion of production functions, defined as the maximum pro-
ducible output for a given input profile. Also, the free disposabil-
ity assumption, known in this case as monotonicity, implies that
f is a monotone non-decreasing function, that is, if x <&’ then
fx) < f(¥'). Accordingly, the technology is defined as:

¢={@y) eRIM 1y = f®)}. (2)

Hereinafter, we will turn our attention to estimating production
functions. The existing methodologies for this purpose are either
parametric or non-parametric. Some of the advantages of the non-
parametric approach are the non-imposition of a prior functional
form on the underlying technology (e.g., a Cobb-Douglas produc-
tion function) and its ability to deal naturally with multi-output
scenarios without assigning prior weights to the inputs and out-
puts. In contrast, the non-parametric approaches also have some
drawbacks in comparison with their parametric counterparts: low
robustness to outliers, they are closely related to the problem of
overfitting, or they do not consider random error when it comes
to inefficiency measurements.

Among the non-parametric techniques, Data Envelopment Anal-
ysis (DEA) is one of the most applied methods in practice. DEA
(Charnes et al. 1978, Banker et al. 1984) is a non-parametric
methodology for estimating the efficient frontier of ¢ by means
of the satisfaction of certain postulates: free disposability, convex-
ity, deterministicness and minimal extrapolation. The principle of
minimal extrapolation is an additional requirement for selecting
the most conservative estimator that satisfies free disposability and
convexity and that contains the observed data.

Banker et al. (1984) put forward the DEA estimator of the pro-
duction possibility set ¢ in the following way:

¢ = {(®,y) € R : x can produce y}

n
¢pea = 1 (X, ¥) e RIS 1y, < Z)»iJ’ri, vr,
i=1

n n
Xz YA Vi3 ki = 1,42 0,Vi

i=1 i=1

3)

Next, we present a graphical example of the DEA estimator of a
production function (see Fig. 1). We can observe that DEA is built
in a piece-wise linear manner and its corresponding estimator is

put) variable. The non-bold face letter x;;, with two subscripts, will denote the j-th
input value of the i-th observation in the sample, whereas the non-bold face letter
Yri, with two subscripts, will denote the r-th output value of the i-th observation in
the sample. The way of denoting the input-output vector associated with the i-th
observation will be (x;,y;), by resorting to bold face letters and only one subscript.
In the case of Greek letters as the vector o, which will be associated with param-
eters, each component will be denoted by using non-bold face letters and only a
subscript: o).
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Data Sample
DEA frontier

%

7.5 10.0

Fig. 1. An example of a DEA estimate.

monotonically non-decreasing. Furthermore, convexity of the pro-
duction possibility set implies concavity. Finally, the application of
the minimal extrapolation principle forces DEA to overfit the data
sample. Consequently, it can effectively describe the observed data
from an efficiency evaluation perspective, but it is not able to fur-
nish an adequate generalization, i.e., a good evaluation of the ac-
tual production function that is behind the data generation?.

2.2. Multivariate adaptive regression splines (MARS)

Contrary to the estimation of efficient frontiers, which is based
on the study of extreme behaviors, traditional regression tech-
niques in statistics seek to explain or predict mean behaviors. Re-
gression analysis lies in modeling the dependence of a response
variable y and a set of predictor variables xq,...,x, from a data
sample perturbed by noise. Thus, the underlying data structure can
be described by the following expression:

y=f@.,. (4)

Here, the first term f(xq,...,Xn) captures the relationship be-
tween the response variable y and the set of selected predictors
X = (X1,...,Xm), whereas ¢ reflects the variability in y that cannot
be explained from the selected predictors. Then, the goal here is
to estimate a mathematical expression f(xq,...,Xxmn) that can ap-
proximate the target function f(xq,...,xn) as much as possible.
The different methods applied for this purpose can be classified as
parametric and non-parametric.

The most recognized parametric technique of regression anal-
ysis is Linear Regression. Under its parametric condition, f is as-
sumed to be a linear combination between the response variable
and the predictors: f(x) = ZT:1 yjxj. The simplicity of this ap-
proach justifies its widespread use in social science disciplines.
Nevertheless, this simplicity is a direct consequence of the re-
strictive assumptions imposed on the estimated function (e.g., lin-
ear dependency, homoscedasticity, etc.), which in many cases re-
sult in very poor fits. In contrast, non-parametric procedures re-
ject the prior assumptions made about the probability distributions
of the data and the relationships between them. Consequently,
the predictor function is made more flexible. From this perspec-
tive, spline-based methods stand out since they strive to approxi-
mate a function f based on piecewise polynomials. To do this, the

. Xm) + €.

2 Data Envelopment Analysis utilizes statistical consistency for approximating the
underlying production function (Simar and Wilson, 2000b), i.e., the quality of the
approximation is exclusively limited to the sample size.
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domain (xq,...,Xm) € D C R™ is divided into K — 1 contiguous in-
tervals by K points and a polynomial is estimated in each inter-
val only from the samples contained therein. The points in the
input space that divide two contiguous intervals and that typi-
cally identify a trend change in the data patterns are commonly
known as knots. Precisely, the performance of spline-based meth-
ods can be limited due to the need to determine, a priori, the po-
sition and number of knots, a task that can be challenging in high-
dimensionality scenarios (Friedman et. al, 2001). To overcome the
aforementioned weaknesses, there are some techniques that fol-
low this methodology built upon the recursive partitioning tech-
nique through an adaptive process that achieves an optimal selec-
tion of the knot locations in a data-driven approach. Here, we can
mention Classification and Regression Trees (CART) by Breiman et
al. (1984) and Multivariate Adaptive Regression Splines (MARS) by
Friedman (1991) as two relevant non-parametric techniques. While
CART estimates step functions, MARS fits functions with different
gradients in each interval. See Zhang and Singer (2010) for a com-
parison between both techniques.

In particular, MARS is a non-parametric regression technique
especially designed to deal with high-dimensional scenarios with
a non-linear relationship and complex interactions in the data. The
resulting model is continuous with continuous first derivatives and
is constructed as a linear combination of splines or product of
splines. MARS can be seen as an extension of the CART technique.

The model-fitting process in MARS consists of two stepwise
procedures: a forward selection and a backward elimination. The
forward selection divides the input space recursively into new sub-
spaces, not necessarily disjointly, based on an intensive search of
knots along the range of the predictors. These knots are used to
make up a set of transformation functions on the original predic-
tors (basis functions) through splines. At each forward step, the
spline function that most reduces the training error is added as
a new term of the model. Once the number of basis functions pre-
set by the user has been created, or the error is not sufficiently
reduced, the backward algorithm sequentially deletes those terms
whose removal implies the least degradation of the model perfor-
mance. In this manner, overfitting is avoided and an assessment
and selection of predictors is made.

The approximation function can be expressed as:

|B|

fs®;7(B)) =Y v5(B) - By(), (5)
b=1

where B is the set of terms or basis functions that the model
contains, B,(x) € B is a transformation on the original predictors
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Hinge Function

max(0, 455-x) "

max(0, x-4.55)

Fig. 2. An example of hinge functions in MARS.

X=(Xq,...,Xm), |B| is the cardinal of set B and y(B) = (y1(B),
.-, ¥p|(B)) is a vector of unknown coefficients to be estimated.
To create the set B during the forward algorithm, Friedman
(1991) proposes implementing a strategy based on selecting a two-
sided truncated univariate spline of degree 1 as a basis function:

bi(Xj — fj) = [:l:(XJ — tj)]+ (6)
The previous expression can also be described by:
b*(x;—t;) = [x; —t;], = max (0.x; —t;), and
bf(Xj—tj)= [tj—ij:max(O,tj—xj). (7)

These piecewise linear basis functions can also be called re-
flected pairs or pairs of hinge functions. The main idea in MARS is
to create reflected pairs by searching over all combination of pre-
dictors xj, j=1,..., m, and all observed values of that predictors
Xji,i=1,...,n, as a candidate knot. Therefore, the collection of re-
flected pairs is:

N = {{(Xj—tj)+, (tj—Xj)+}|fj € {Xj],ij,...,Xjn},j: 1,...,m}.
(8)

Next, we show an example of a pair of hinge functions.
Fig. 2 shows a knot t; in x; =4.55. In this manner, a reflected
pair is created from the following expressions: (4.55 —x;)+ and
(x; —4.55),. The former, the left-side hinge function, is canceled
under the condition that x; > 4.55 and it has a negative slope in
the left-side. Conversely, the right-side hinge function is canceled
for the data that satisfies the condition x; < 4.55 and it has a pos-
itive slope in the right-side.

The algorithm is initialized with B;(x) = 1 to set the initial re-
gion to the entire domain. Next, we select the pair of hinge func-
tions from (8), multiplied by another basis function already en-
tered in the model (parent term), that most reduce the mean of
the residual sum of squares in the training sample (the lack-of-fit
criterion). In the case of considering a single response variable (y),
the criterion is defined as follows:

n
LOF = 3" (vi~ Jota: ¥ (8))
i=1

At this point, only B;(x) can be chosen as a parent term. Then,
B,(x) and B3(x) are formed from the following expressions, re-
spectively: 1-(x; —tj)+ and 1-(t; —x;);. Notice that Bi(x) is a
0-degree basis function, while B,(x) and B;(x) are 1-degree ba-
sis functions. From this point, B, (x) and Bs(x) can already be se-
lected as parent terms and therefore can give rise to multivariate

2

(9)
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spline basis functions. Any basis function of, at most, K, degree
with K, > 1, is defined by the following expression:

K,

By(®) = [ [[¥nk- (X —tix)], Y € B.
k=1

Here v, = £1 indicates the sense of the hinge function, x;, is
the j-th predictor variable corresponding to the k-th term in the
product for the b-th basis function, tj, is a value such that t; e
{ijk,-|Bb(x,-) > 0} and K, is the number of factors that give rise to
the term By (x).

This interaction term must necessarily involve different vari-
ables to avoid producing dependencies on individual variables of a
high power that can be very sensitive to extreme values. Thus, to
introduce a new basis function of degree K}, some conditions must
be met: (i) a basis function of degree K, — 1 must have been pre-
viously entered in the model and (ii) the same variable cannot ap-
pear twice in the product. A new basis function can be kept as uni-
variate by selecting By (x) as the parent term. In (10), K}, is usually
limited by a hyperparameter that determines the maximum degree
allowed in the interaction terms. As a general rule, it is established
in 2 or 3. In case of considering K, =1, Vb € B, B;(x) =1 would
be the only possible parent term and a purely additive model with
only univariate basis functions would be made. This is referred as
the additive version of the MARS model. Under this scenario, by
abuse of notation, we will directly write ¥, x;, and ¢; instead of
1//'b], ijl and tjbl'

In (5), the parameters in y(B) are estimated using the least-
squares method through the following Quadratic Programming
model:

(10)

n
£(p(B)) = minimize - 3" (vi ~ Fo(xi: ¥(B)))’. (1)
i=1
The forward algorithm creates basis functions while reducing
the lack-of-fit criterion until a maximum number of terms speci-
fied by the user is reached. At the end of this first step, the estima-
tor should overfit the data and therefore, a backward-pruning pro-
cedure is required to remove those basis functions that do not con-
tribute significantly to the fit of the model. As Friedman (1991) de-
scribes, the regions created during the forward selection overlap
and the basis function B;(x) cannot be eliminated. These two con-
ditions prevent the discontinuity of the estimator and, in conse-
quence, it is not necessary to use a complex pruning procedure
based on sibling pairs as in CART (Breiman et al., 1984).
The backward elimination is aimed at reducing the complexity
of the model built in the first step to avoid overfitting. For this
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- Additive version of MARS

Data sample DEA frontier

Fig. 3. An example of DEA and an additive version of MARS.

purpose, this second step prunes the model by deleting those ba-
sis functions with a lower contribution to the model’s accuracy ac-
cording to the generalized cross-validation (GCV) criterion (Golub
et al. 1979). The GCV can be expressed as follows.

XL [y fas y(B))]z

GCV(B) = — , (12)
-]
n
where C(B) is a cost complexity function defined as:
C(B)=C(B)+d- x. (13)

Here, C(B) is the number of parameters in fB, the hyperparam-
eter d (normally set between 2 and 4) penalizes the complexity of
the model and x is the number of linearly independent basis func-
tions in fB. Hence, the backward algorithm creates a set of |B| —1
sub-models by removing basis functions one by one and selects the
model, including that resulting from the forward procedure, that
minimizes (12).

Finally, a graphical representation of the additive version of the
MARS estimator is shown (see Fig. 3). Notice that both techniques,
DEA and the additive version of MARS, share the construction
of the corresponding estimator by piecewise-linear functions (as
long as K is set to 1). Nevertheless, it is obvious that the additive
MARS estimator needs certain adaptations to fulfill the usual
axioms of microeconomics. A first line of action should be based
on getting additive MARS to envelop the data instead of dealing
with the average of the response variable. Another requirement is
to get the additive MARS estimator to satisfy the properties of free
disposability (monotonicity in this single-response scenario) and
concavity.

3. The new approach to estimate production functions

In this section, we propose a new method based on an adap-
tation of the additive MARS model for estimating production func-
tions that satisfy the usual axioms of microeconomics through a
data-driven process that does not assume any particular distribu-
tion on the data noise and technical inefficiency. The new method
will generate a piecewise linear function as an estimate resembling
the estimator obtained through DEA. On the other hand, this new
approach has an advantage over DEA in that it deals with over-
fitting through a pruning procedure based on generalized cross-
validation (Golub et al. 1979) as in Friedman (1991).
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Throughout the following sections, we review what modifica-
tions are necessary to impose on the original algorithm of the ad-
ditive version of MARS to make the estimator f satisfy certain clas-
sical axioms of production theory: (A1) if x < &', then f(x) < f(x)
and (A2) concavity. Postulate Al refers to monotonicity and states
that the greater amount of resources consumed by a firm, the
greater the ability to produce more or at least the same output;
while postulate A2 refers that f is a concave function, which is re-
lated to the convexity of the production possibility set ¢ in (2).
Additionally, f must be a function that envelops the observations
from above.

To continue, we present two subsections showing how to adapt
the forward and backward algorithms associated with the additive
version of MARS.

3.1. The forward algorithm

First, we introduce the two key elements that need to be
adapted for the standard additive version of the MARS model to
be used in the world of production function estimation:

1. Limiting the maximum degree of the basis functions (BFs) in
(10) to generate a purely additive MARS model. That is, the
new technique only allows univariate BFs.

2. Adding additional constraints to the programming model de-
fined in (11) to estimate a function that envelops the data
from above and satisfies both monotonicity and concavity.

We start with point 1. The satisfaction of the axioms of mono-
tonicity (A1) and concavity (A2) can only be eased by setting a
maximum degree of 1 in the construction of the set of BFs in (10).
As a result, the interaction of variables (multivariate BFs) is not
allowed. This limitation might compromise the predictive ability
of the algorithm in some odd scenarios with continuity beyond
the first derivative that cannot be fitted through 1-degree splines
(Eilers and Marx, 2010); however, it provides a notable advantage
in computational terms. It is easy to see that the most computa-
tionally demanding piece of code is the fitting of the parameters
through the minimization problem in (11). The total computation
time is proportional to the sample size, the number of predictors
and the level of interactions between variables. Hence, by restrict-
ing Kj, to 1, the computational cost is significantly reduced. We can
name another advantage derived from this restriction. The estima-
tor linked to this additive model is piecewise linear, thus enabling
a direct comparison with the DEA estimator. In fact, somehow, the
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new model could be reinterpreted as a pruned version of DEA that
overcomes its overfitting problem.

Regarding point 2, the specific adaptations of the additive MARS
model to satisfy axioms A1 and A2 are gradually detailed through-
out the text. From Fig. 3, it can be seen that MARS was not
designed by Friedman (1991) to deal specifically with produc-
tion frontier estimation in microeconomics. Obviously, some well-
known techniques for estimating coefficients in regression analy-
sis, such as standard Least Squares or the Cholesky decomposi-
tion, cannot be used since they are aimed at estimating the mean
value of the response variable. As an alternative to (11), we pro-
pose a linear optimization program that includes some extra con-
straints to capture the estimation of maximum trends instead of
mean trends and that ensure that the postulates of monotonic-
ity (A1) and concavity (A2) described above are fulfilled. In this
way, a natural adaptation of the additive version of MARS algo-
rithm to the discipline of Efficiency Analysis is achieved, although
it should be noted that, the addition of new constraints to the
optimization model to be solved entails a higher computational
cost.

Let us recall the process of introducing a new pair of BFs in the
standard MARS. The algorithm must select an input variable j, j =
1,....m, a knot t; € {Xj1,Xj5,...,Xj,} and a parent basis function
with the aim of reducing the lack-of-fit criterion in the training
sample. Nevertheless, the maximum degree of a BF is restricted to
1 in our approach, thus the parent term will always be By (x) = 1.
Now, for the sake of convenience, we rewrite the estimator (5) in
terms of reflected pairs instead of basis functions. Accordingly, our
estimator is as follows:

P
fe(%; (P), a(P), B(P)) =10(P)+ ) hy(x; a(P), B(P))
p=1
|P|
= P+ [a,,(P) - (x5,-3,) , +Bo (P) - (tjp—xjp)J, (14)
p=1

where P is the set of reflected pairs at a certain generic
stage of the forward procedure (following the sequential or-
der in which the variables were introduced in the algorithm),
{(xj, = tj,) . (tj, —xj,)_ } denotes the p-th reflected pair incorpo-
rated into the model and a(P) and B(P) are vectors of unknown
coefficients to be estimated.

Henceforth, we deal with describing the requirements neces-
sary to comply with the conditions set out in point 2 above. The
first property we satisfy refers to the enveloping nature of the
production function, f, estimated through the new approach. This
condition implies that, given (x;,y;), f(x;) must necessarily be
above the observed output y;. Mathematically, this is expressed
as y; < f(xi) for each learning sample i,i=1,..., n. Therefore, it
seems natural to force the estimator to meet the same association.
At this point, the linear optimization program to be solved under
the new approach would be as follows:

n
minimize &
e7(P).aP).BP) iz

subject to

|P]|
W)+ 3 [ap(m (x5, —t5,), + Be(P) - (8, _ij)+] —& =Y
p:
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minimize
&,79(P).a(P),B(P)

i=1

subject to
P|
P+ [ap(P) (%, —13,), + Bo(P) - (8, — x,-p)+]
p=1
—e&i=y;, i=1,...,n, (15.1),
g >0, i=1,...,n, (15.2) (15)

where the new variable &;, which measures the error term,
is defined as ¢;= f(x;)) —y; = 10(P) + ZLP:'l[ozp(P) . (xjp - tfP)Jr +
Bp(P) - (tjp - xjp)+] —¥;. Note that the error term &; must be posi-
tive by constraint 15.2, and hence, there is no error compensation.
Consequently, we can resort to Linear Programming rather than
Quadratic Programming.

This new estimator is equivalent to the additive (forward) MARS
model, but now estimating a frontier that envelops the data cloud
instead of estimating the mean behavior of the data thanks to con-
straints (15.1) and (15.2). However, non-monotonic estimators can
be given by the model (15), thereby not satisfying axiom Al. Like-
wise, concavity of the estimator is not guaranteed, which would be
a contradiction in terms of axiom A2. We can observe these facts
in Fig. 4 where an enveloping but not monotonic nor concave esti-
mator gives rise to a non-convex technology (the shaded area).

The idea behind the satisfaction of non-decreasing monotonic-
ity (A1) and concavity (A2) of the production function estimation
with the new method is quite simple. The sum of non-decreasing
monotonic functions yields a non-decreasing monotonic function
and, in the same way, the sum of concave functions produces a
concave function. Therefore, the strategy to follow consists of deal-
ing with each reflected pair separately ensuring both properties,
so that later, they are also satisfied by the estimator f through the
sum of non-decreasing monotonic concave functions.

Next, we establish sufficient conditions to impose monotonicity
and concavity on the estimator under the new approach. In par-
ticular, as we mentioned above, we exploit the well-known result
that states that the sum of several monotonically non-decreasing
and concave functions is monotonically non-decreasing and con-
cave. Consequently, the corresponding proofs of Propositions 1 and
2 are both straightforward.

Proposition 1. If «p(P) >0 and B,(P) <0, p=1,...,|P|, then the
function in (14) is monotonically non-decreasing.

Proposition 2. If ap(P) + Bp(P) <0, p=1,...,|P|, then the func-
tion in (14) is concave.

Therefore, by adding these new three constraints resulting from
Proposition 1 and Proposition 2 to model (15), the Linear Program-
ming model to solve during the forward selection procedure must
be the following:

i=1,...,n, (16.1)

) (16)
& >0, i=1,...,n, (16.2)
—ap(P) = Bp(P)=0, p=1,...,|P|, (16.3)
apP)>0, p=1,...,|P|, (16.4)
- Bp(P)>0, p=1,....P[, (16.5)
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An estimate from model (17)

Data Sample

x

Fig. 4. A possible estimate obtained from model (15).

Data sample
DEA frontier

— The new approach (forward process)

i

Fig. 5. An example of the frontier estimates linked to DEA and the new approach after the forward process.

The constraints (16.1) and (16.2) correspond to the restrictions
of model (15). Moreover, constraints (16.3) and (16.4)-(16.5) are in-
cluded to guarantee the satisfaction of concavity and monotonic-
ity, respectively. With this, the estimator linked to model (16) ful-
fills the conditions set out in points 1 and 2 (at the beginning of
this section). However, it still suffers from overfitting as DEA. Obvi-
ously, the accuracy at this point is fairly good since the piece-wise
linear estimator closely approximates the data sample (low bias).
Unfortunately, this estimator depends excessively on the training
data (high variance) and therefore makes it difficult to yield a good
generalization performance. These are also common features in the
DEA approach. Precisely, in Fig. 5, it can be seen that DEA, which
exhibits a noticeable overfitting by construction, and the new ap-
proach before pruning-back, provide almost identical estimators.

An additional difference between our method and DEA is that
the new approach has a family of hyperparameters that can be
tuned to obtain alternative (forward) production frontiers for the
same database. Some of these parameters have already been used
during the description of our algorithm. The degree of overfitting
of the model can be controlled by the maximum number of pairs
to be incorporated into the model (1) and the minimum reduced
error rate for the addition of two new BFs (&). Moreover, the com-
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putational speed and the shape of the piecewise linear estimator
can be regulated by (i) minspan (L), i.e.,, the minimum number
of observations between two adjacent eligible knots, (ii) endspan
(Le), i.e., the minimum number of observations before the first and
after the last knot and (iii) the procedure to create the grid of eligi-
ble knots, which can be based on the observed values (as the orig-
inal approach) or created ad-hoc by the user. In Fig. 6 we can see
how different hyperparameterizations of the algorithm give rise to
frontiers that approximate to a greater or lesser extent the training
sample used. Note that, although the production frontier resulting
from the new approach after executing the forward procedure will
not be the final one, its shape, however, will considerably condi-
tion the final production function resulting from the backward al-
gorithm. For example, a function too far from the data could lead
to an underfitted model, while a function too close to the training
sample could prevent optimal correction using the backward algo-
rithm. In this case, Friedman (1991) recommends that back prun-
ing discards around half of the BFs created during the first stage.
As a general rule, and depending on the sample size, resampling
techniques such as hold out (commonly known as training and test
split) or cross-validation can be used to select the optimal set of
hyperparameters.
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Data sample

%

10.0

Fig. 6. An example of two alternative frontier estimates linked to the new approach after the forward process.

Algorithm 1
Forward procedure for the new approach.

Algorithm 1. Forward procedure for the new approach
Input:

77, maximum number of reflected pairs
&, minimum error reduction for a new iteration to be performed
Output: f,; P
LOF,;, =oo; P=0
WHILE \P] <n
LOE}, = LOE,,
FOR j=1TO m
FOR i=1TO n
Selecta knot: ¢, :=x,

Consider a new reflected pair into model (14): {()r, —t, )‘ ,(t/ -x; )‘ }

Update P as Pu[(x,,m 71‘4,4.\ ) ,(t/wﬂ s )‘} with X =X and =l
Obtain the coefficients 7,(P). a(P). B(P) by (16).

Determine LOF by (9)

IF LOF < LOF!, THEN

LOF},, = LOF;

P, =P
END IF
END FOR
END FOR

P=P

opt

IF LOF}, < LOF,

| LOF,, =LOF},
ELSE
‘ end loop
END IF
END WHILE
P'=P
[ is defined as in (14) with P=P"

-(1-&) THEN

Finally, the steps that must be carried out in the forward proce-
dure to determine a frontier estimate linked to the new approach
are shown in Algorithm 1, where P* represents the set of reflected
pairs at the end of the forward procedure.

3.2. The backward algorithm

Overfitting is a key threat to the reliability of a statistical model.
The new technique, as in the original MARS algorithm, makes in-
tensive use of the response variable to define the set of BFs. This
fact, in general, drastically reduces the bias of the model, but at
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the same time increases its variance. It means that the model may
“memorize” the training data and, in consequence, not be able
to provide a good response to a new sample. This is a common
problem in machine learning algorithms. Conveniently, these algo-
rithms always include certain procedures to accomplish the model
to generalize correctly. For our purpose, we suggest applying our
approach along with a pruning procedure to suitably evaluate pro-
duction frontiers. To do so, the standard approach performed by
Friedman (1991) in MARS based on generalized cross-validation
will be slightly adapted to meet the requirements of the frontier
analysis framework.

The forward stepwise procedure ends with the creation of a set
of paired BFs, in addition to the constant basis function B;(x) =1
(intercept term). This model generally suffers from overfitting (see
Fig. 5). Consequently, a process of backward elimination is initi-
ated (see Section 2.2) where those BFs that do not contribute sig-
nificantly to the improvement of the model’s performance are dis-
carded. In other words, it attempts to promote an optimal balance
between the complexity and the precision of the model. Naturally,
this approach breaks the reflected pair structure used during the
first stage of the algorithm. Now, only some pairs of BFs will be
kept in the model, while others will be totally or partially elimi-
nated. With this, each BF can be in three different states: paired,
left-side unpaired and right-side unpaired. In this way, function (5)
can be redefined as follows:

fs(x: T0(B). & (B). B(B). 8(B). w(B))
[H| |G|

= 10(B) + Y _ha(x: & s(B). B(B)) + Y g(x: 8(B))
a=1 c=1

IR]|
+) Te(®; @ (B)), (17)
e=1
where B={B;(x)}UHUGUR is the set of BFs that the model
contains, being H the set of reflected pairs, G the set of right-
side unpaired BFs and R the set of left-side unpaired BFs. In
this way, ha(x: a(B). B(B)) = aa(B) (xj, — t;, )+ + Ba(B)(t, —X;,)+
is the a-th reflected pair in H, gc(x:3(B)) = 8c(B)(xj, —t; )y is
the c-th right-side unpaired basis function in G and r.(x; ®(B)) =
we(B)(tj, — Xj,)+ is the e-th left-side unpaired basis function in R.
Next, we state the conditions necessary to guarantee that the
function (17) satisfies monotonicity and concavity. The proof is
based on the well-known result that establishes that the sum of
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Fig. 7. An example of alternative production frontiers derived from the new approach.

non-decreasing and concave functions is also a non-decreasing and
concave function.

Proposition 3. If «;(B) + B4(B) <0, og(B) >0, Ba(B) <0, a=
1,...,|H|, 8¢(B) =0, c=1,...,|G|, and w(B) <0, e=1,...,|R|,
then the function (17) is a non-decreasing and concave function.

Under the assumptions of the above result, notice that if
8c(B)=0,c=1,...,|G|, then g.(x;8(B)) =0, c=1,...,|G|. Conse-
quently, g.(x; 8(B)), c=1,..., |G|, disappears from expression (17).

From Proposition 3, we confirm the need to modify the way
of proceeding described in Friedman (1991). The backward algo-
rithm will be identical to that described in Section 2.2. except for
the manner of selecting a BF to be removed. While in the stan-
dard MARS any BF is a candidate to be eliminated, in the case of
the new approach, we must introduce two conditions that must be
considered before selecting a BF:

1- Right-side BFs can only be removed from reflected pairs.
2- Left-side BFs can only be removed when appearing unpaired.

In this way, it is ensured that gc(x; §(B)) =0, Vc=1,...,|G|.

Now, we can establish the Linear Programming model to solve
during the backward stage.

d = 2). The quantity d in (13) represents a cost for each BF that
is maintained in the model. Larger values for d lead to a smaller
number of knots being placed and thereby a model less prone to
suffer from overfitting. Again, the optimal value of d can be opti-
mally selected by hold-out or cross-validation.

4. Computational experience

Here we describe the simulation results that allow the compar-
ison of the following methods: the frontier estimate derived from
Algorithm 2, DEA and C2NLS. Thus, an assessment of these tech-
niques carried out under six different simulated scenarios is pre-
sented. These same six scenarios were defined by Kuosmanen and
Johnson (2010). Their descriptions appear in Table 1.

Scenarios 1 and 2 represent a single-input case, while scenarios
3-6 represent multi-input cases with interaction of variables (two
and three inputs with different curvatures for the target function).
For all scenarios, we tested three data set sizes of 50, 100 and 150
observations. The input data were randomly sampled from a uni-
form distribution Uni[1, 10], independently for each input and firm.
Subsequently, a random inefficiency term u~ |[N(0, 0.4)| was com-

n
minimize > &
&.70(B),«(B).B(B).w(B) =]
subject to
H]| IR|
To(B) + 2:1 I:Ola(B)(Xjai—tja)++/3a(B)(tja —Xja,‘)+:| + X; I:CL)Q(B)(I']‘e _ngi)+:| —-&=y;, i=1,...,n, (18.1) (18)
a= e= .
g >0, i=1,...,n, (18.2)
—aq(B)— Bs(B)>0, a=1,...,|H (18.3)
oq(B)>0, a=1,...,|H (18.4)
—Ba(B)>=0, a=1,...,|H (18.5)
—we(B)>=0, e=1,...,|R| (18.6)
Model (18) only includes a new constraint, (18.6), with respect Table 1 )
to the forward model (16), which makes it possible to ensure that Simulated scenarios.
the left-side unpaired BFs also comply with the monotonicity and Scenario # Inputs Target function f(x)
concavity properties. 1 1 In(x) +3
The steps that must be carried out in the backward procedure 2 1 3+x95 £ In(xy)
of the new approach are shown in Algorithm 2. 3 2 0.1%; + 0.1x; + 0.3 (x;X)%°
Finally, Fig. 7 shows the effect of the pruning procedure on the 4 3 0.1x1 +0.1%; + 0.1x3 + 0.3 (x1%,%5) 2
function obtained after the forward algorithm. For this, two dif- > 2 0.1%; + 0.1x2 4+ 0.3 (x; %) /3
’ 6 3 0.1%1 4 0.1x5 + 0.1x3 + 0.3 (x;X2x3) /4

ferent values of the hyperparameter d have been used (d =1 and
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Algorithm 2
Backward procedure for the new approach.

Algorithm 2. Backward procedure for the new approach
Input:
Sr
P’ set of reflected pairs after the forward procedure.
Output: f ;B

, the model after the forward procedure.

The set of paired BFs in P": H

The set of right-side paired BFsin H : H,
The set of left-side unpaired BFs R =&
B={B(x)JUHUR

Obtain the coefficients 7,(B), a(B), B(B). o(B) by (18).
Compute GCV( ) by (12).

WHILE |B|>1

GCV,,,
Define the set of BFs to be selected for being removed: W :=H, UR
FOR EVERY weW
IF we H, THEN
Hyy = H \{w}
Let w" be the left-side paired BF associated with w
H'=H\ {w, w‘}
R'=R u{w“}
ELSE
| R=R\{w}
END IF
Update B:={B,(x)}UH' UR'

Compute GCV(B) by (12).

IF GCV(B)<GCV,, THEN
GCV,,, =GCV (B)
B, =B. M, =H' H, =H, R, =R
END IF
END FOR
B=B,,. H=H],. H,=H} . R=R,,
END WHILE
B =B with GCV(B)=GCV,,

f g is defined as in (17) with B=B" and igl (x;ﬁ(B‘))

=1

=0

puted. Then, the output used for the analysis was calculated as y =
f(®) —u. We ran 100 trials (I=1,...,100) for each combination of
scenario and data set size to investigate the relative performance of
the methods. Performance of each method was evaluated by two
standard criteria: the mean squared error (MSE) and the bias. The

MSE statistic is defined as /%0 > X (f(x’) - f(x’)) /100n, while

the bias is computed as Y[°9 0 | (f(xl) - f(x’))/lOOn where &/
denotes the i-th input profile correspondmg to the [-th trial. At
this point, let us highlight two details. First, in these two formu-
las, f (x’) denotes the value of the true frontier while f (x’) rep-
resents its estimation for the input profile xf. Second, in the for-
mula corresponding to the bias, it is more usual to resort to the
absolute value of the differences. However, at this point, we fol-
low Kuosmanen and Johnson (2010), from which we mimic the
simulation scenarios with the objective of comparing the results,
where the authors defined the bias in this way to identify the
‘sign’ of the deviation: negative (f f) or positive (f f). In par-
ticular, the accuracy of the estimates in quadratic terms is mea-
sured by the MSE, allocating the same weight to negative and pos-
itive deviations. Therefore, MSE will be used as a model evalua-
tion metric. The bias statistic, instead, indicates whether the esti-
mated frontier f systematically underestimates (bias < 0) or over-
estimates (bias > 0) the true frontier f. We note that positive and
negative deviation terms cancel out when averaged over the obser-
vations and simulation runs; however, it does give useful informa-
tion about the behavior of the estimated frontier with respect to
the target frontier. Then, following Kuosmanen and Johnson (2010),
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we analyze the model’s performance in two ways: the magnitude
(MSE) and the direction (bias) of the error.

Additionally, we determined the best set of hyperparameters
for each trial by a training (70%) and test (30%) split due to the
high computational cost involved in cross-validation. In our con-
text, the hyperparameters are 7, &, L, Le and d. The grid of avail-
able knots was the observed data as in Friedman (1991). We fixed
the maximum number of pairs to be incorporated into the model
(n) and thereby we only control the growth of the forward algo-
rithm through &. From our own experience, we set the following fi-
nite value space for each hyperparameter: £ € {0.1, 0.01, 0.001, 0},
Le{-2, —1}, Lee{-2, —1} and d € {1, 2, 3}. The -1 and -2
values in L and Le correspond to the minspan and endspan ap-
proaches in Friedman (1991) and Zhang (1994), respectively. These
values generated a total of 48 different hyperparameter combina-
tions for the proposed simulations.

Table 2 records the mean, the standard deviation (in brackets)
and the median of the best-performing hyperparameters in our
simulations. The results are detailed below. The best value of the
& hyperparameter is highly dependent on the sample size. Specifi-
cally, it reveals an inverse relationship between the number of ob-
servations in the sample and the optimal value of &. The value 0.1
does not seem to allow the (forward) model to grow enough and
therefore does not provide promising results. In this case, it seems
reasonable to search for optimal values near 0.01 (above and be-
low) since values around 0.001 represent an increase in computa-
tional cost that does not necessarily improve the results obtained.
Regarding the hyperparameters L and Le, a certain general ten-
dency is observed for the value —1 (Friedman approach) in case
of the minspan. The Friedman and Zhang approaches provide very
similar results in case of the endspan, therefore, they can be cho-
sen interchangeably. Regarding the hyperparameter d, the value 3
could be discarded since they do not usually perform well. Like-
wise, value 1 seems to give the best results.

Table 2 also shows the computation time associated with the
new technique. It should be noted that the computing time spent
can be seen as a drawback of the new approach in compari-
son with other techniques such as DEA, which is directly based
on Linear Programming. The experiments were conducted on a
workstation with 2.3 GHz Intel(R) Xeon(R) CPU E5-2650 v3 with
40 cores, 62 Gigabyte of RAM and an Ubuntul8.04.5 LTS op-
erating system. The code was implemented in R version 3.6.3.
The code is hosted in an open-source repository on GitHub at
https://github.com/Victor-Espana/MLFrontiers. To solve the opti-
mization problems (16) and (18), the Rglpk package (Theussl and
Hornik, 2019) was utilized. Concerning the execution time, the re-
sults illustrate an exponential relationship with the sample size.
Moreover, this situation becomes even more critical when the
number of inputs is also increased>.

Table 3 examines the performance of the new technique, DEA
and C2NLS grounded on the MSE criterion. The first two columns
indicate the background and the number of observations. The next
four columns state the MSE means for the methods under con-
sideration. Finally, the last four columns show the variation in the
MSE statistic (and its sign) between the new technique versus DEA
and C2NLS. The results obtained show, in general, how the ap-
proach we have proposed present significant improvement over
the DEA and the C2NLS techniques. First of all, it should be men-

3 We also tried to find out the execution time required to get the results by ap-
plying the new method when a standard desktop PC (Personal Computer) is used in
the case of analyzing the most complex scenario (four variables and 150 observa-
tions). In this case, the experiments were conducted on a PC with 1.80 GHz Intel (R)
Core (TM) i7-8550U CPU with 12 Gigabyte of RAM and a Windows 11 Home 64 bits
operating system. We executed 100 trials, obtaining that the mean time required by
our technique was 62 seconds (approximately one minute).
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Table 2
Optimal hyperparameters for the new approach.
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Scenario Sample size Hyperparameter Execution time
(#inputs) £ L e P (in seconds)
Mean (std) Median Mean (std) Median Mean (std) Median Mean (std) Median
1(1) 50 0.059 (0.048) 0.100 -1.33 (0.47) -1 -1.47 (0.50) -1 1.45 (0.64) 1 0.32
100 0.025 (0.040) 0.001 -1.36 (0.48) -1 -1.35 (0.48) -1 1.42 (0.70) 1 2.73
150 0.011 (0.027) 0.001 -1.40 (0.49) -1 -1.25 (0.44) -1 1.24 (0.55) 1 6.93
2(1) 50 0.043 (0.048) 0.010 -1.29 (0.46) -1 -1.40 (0.49) -1 1.48 (0.75) 1 0.46
100 0.014 (0.031) 0.001 -1.45 (0.50) -1 -1.37 (0.49) -1 1.24 (0.53) 1 3.44
150 0.004 (0.011) 0.001 -1.42 (0.50) -1 -1.38 (0.49) -1 1.22 (0.46) 1 9.16
3(2) 50 0.045 (0.047) 0.010 -1.37 (0.49) -1 -1.61 (0.49) -2 1.84 (0.85) 2 1.05
100 0.038 (0.046) 0.010 -1.36 (0.48) -1 -1.48 (0.50) -1 1.64 (0.84) 1 4.69
150 0.028 (0.041) 0.010 -1.21 (0.41) -1 -1.32 (0.47) -1 1.65 (0.82) 1 11.02
4 (3) 50 0.034 (0.045) 0.010 -1.42 (0.50) -1 -1.52 (0.50) -2 1.92 (0.87) 2 2.16
100 0.018 (0.034) 0.001 -1.34 (0.48) -1 -1.51 (0.50) -2 1.42 (0.68) 1 14.11
150 0.016 (0.030) 0.010 -1.32 (0.47) -1 -1.55 (0.50) -2 1.47 (0.73) 1 36.72
5(2) 50 0.046 (0.047) 0.010 -1.31 (0.46) -1 -1.51 (0.50) -2 1.97 (0.87) 2 1.00
100 0.042 (0.047) 0.010 -1.24 (0.43) -1 -1.34 (0.48) -1 1.56 (0.77) 1 4.73
150 0.034 (0.044) 0.010 -1.27 (0.45) -1 -1.33 (0.47) -1 1.50 (0.70) 1 12.12
6(3) 50 0.036 (0.046) 0.010 -1.27 (0.45) -1 -1.60 (0.49) -2 2.07 (0.77) 2 2.32
100 0.024 (0.039) 0.010 -1.40 (0.49) -1 -1.39 (0.49) -1 1.56 (0.74) 1 12.50
150 0.020 (0.037) 0.001 -1.40 (0.49) -1 -1.36 (0.48) -1 1.43 (0.69) 1 39.46
Table 3
Relative performance of estimation methods linked to MSE.
Scenario (#inputs) Sample size Mean squared error Variation in MSE (%)
The new approach DEA C2NLS The new approach vs DEA The new approach vs C2NLS
1(1) 50 0.007 0.010 0.006 -30.45 +14.38
100 0.003 0.005 0.005 -44.59 -46.78
150 0.002 0.003 0.004 -35.71 -55.33
2(1) 50 0.007 0.011 0.009 -32.99 -15.64
100 0.004 0.006 0.006 -41.08 -36.82
150 0.002 0.003 0.006 -36.81 -63.08
3(2) 50 0.018 0.030 0.013 -39.29 +38.52
100 0.018 0.018 0.009 -03.39 +86.79
150 0.018 0.012 0.010 +51.86 +76.32
4 (3) 50 0.018 0.065 0.024 -71.86 -23.77
100 0.016 0.046 0.017 -65.11 -06.80
150 0.015 0.035 0.015 -56.08 +01.12
5(2) 50 0.008 0.029 0.014 -72.39 -41.79
100 0.004 0.015 0.008 -73.57 -53.96
150 0.003 0.011 0.007 -75.04 -60.51
6(3) 50 0.012 0.060 0.022 -80.30 -46.59
100 0.006 0.040 0.016 -84.84 -60.52
150 0.004 0.030 0.014 -86.23 -69.50

tioned that all the techniques are affected by the increase in di-
mensionality, since the mean MSE increases when the number of
inputs increases. However, this does not occur in the same pro-
portion for all methods. While DEA increases the MSE by 646% by
increasing the number of inputs from 1 to 3 (scenarios 1 and 2 ver-
sus scenarios 4 and 6), in the case of our approach, this increase
is between 3 and 4 times lower. Therefore, it seems that the new
technique is more robust than DEA to the curse of dimensional-
ity. The improvements of the new approach over DEA ranged from
3.39% to 86.23%. Scenario 3 is the most unfavorable for our ap-
proach, especially in the case of 150 samples. It is worth noting
that the additive nature of our model can be a limitation depend-
ing on the degree of curvature of the true production function con-
sidered. The production functions associated with scenarios 3 and
5 are the same except for the value of the exponent corresponding
to the interaction term between input 1 and input 2. While our
results are poor in scenario 3, they are really good in the case of
scenario 5. The reason is the value of the exponent. We executed
an extra computational experience following the same mathemat-
ical expression for the production function as that used in scenar-
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ios 3 and 5 but playing with different values for the exponent, be-
tween 0.1 and 1. Our results showed that the new approach seems
to work well up to a certain value of the exponent (a threshold
of around 0.5) for which the performance drops off sharply re-
gardless of the sample size. Anyway, although our model is addi-
tive in nature, which represents a weakness from a methodologi-
cal point of view when the true production function has interac-
tions between variables, we have shown using the simulation sce-
narios taken from Kuosmanen and Johnson (2010) (which contains
4 non-additive scenarios with different degrees of curvature) that
the new method can outperform the other two techniques consid-
ered (DEA and C2NLS) even in non-additive situations. Indeed, con-
siderable improvements are observed in the rest of the scenarios
analysed, especially in 4, 5 and 6. Regarding C2NLS, the improve-
ment in results is also quite substantial. In this case, the improve-
ment percentages of the new technique with respect to C2NLS is
between 6.80% and 69.50%. The conclusions reached are very sim-
ilar to those described above. C2NLS provides better results for all
sample sizes in scenario 3, while in the rest of the cases, our tech-
nique performs better. In the 1-input scenarios (1 and 2), a greater
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Table 4
Relative performance of estimation methods linked to bias.
Scenario (#inputs) Sample size Bias
The new approach DEA C2NLS

1(1) 50 -0.036 -0.070 +0.006
100 -0.021 -0.044 +0.005
150 -0.017 -0.035 +0.004

2(1) 50 -0.031 -0.074 +0.009
100 -0.024 -0.051 +0.006
150 -0.018 -0.037 +0.006

3(2) 50 +0.002 -0.124 +0.013
100 +0.034 -0.092 +0.009
150 +0.049 -0.072 +0.010

4(3) 50 -0.019 -0.199 +0.024
100 +0.010 -0.162 +0.017
150 +0.032 -0.140 +0.015

5(2) 50 -0.042 -0.120 +0.014
100 -0.021 -0.081 +0.008
150 -0.012 -0.067 +0.007

6 (3) 50 -0.055 -0.190 +0.022
100 -0.029 -0.149 +0.016
150 -0.012 -0.124 +0.014

percentage of improvement is observed when the number of units
in the sample increases. However, this situation is completely the
opposite in scenario 4.

Table 4 reports the results based on bias. The structure of Table
4 is the same as Table 3 but does not include the last 2 columns.
We first start by describing DEA’s performance. The production
function estimated by DEA is consistently below the true produc-
tion function as reflected by all negative values in its bias. In this
way, DEA is able to provide a correct description of the data but
fails to provide an adequate estimate of the underlying function.
That is, DEA can be considered a purely descriptive technique with
little inferential power, except in the case of invoking the con-
sistency property of the DEA estimator. Furthermore, as was the
case with the MSE statistic, a decreasing trend is also observed
(approaching zero) as the number of observations in the sample
increases. As for the rest of the techniques, certain patterns are
shown in the results obtained. The new technique tends to under-
estimate the true production function and also provide better re-
sults (in terms of bias) when the sample size increases. Neverthe-
less, the new approach overestimates the true production function
in scenario 3. However, since the new technique does aim to es-
timate the underlying function, the presence of both positive and
negative deviations is natural. On the other hand, C2NLS tends to
overestimate the true production function, and in this case, the
level of bias seems to increase as the sample size grows in some
scenarios such as 3 and 4.

Next, we provide the contour plot for different levels corre-
sponding to several functions: the Cobb-Douglas production func-
tion f(x1,x;) =x94.x91, the DEA estimate and the estimate based
on the new approach (see Fig. 8). Fig. 8 illustrates the fact that
DEA usually fails to adequately approach the theoretical production
function, i.e., the Cobb-Douglas function in this case. In contrast,
the fig. also shows that the new method is capable of achieving
better approximations.

The statement that DEA (and related non-parametric envelop-
ment techniques such as Free Disposal Hull, FDH) suffers from an
overfitting problem is very recent in the literature. From a statisti-
cal point of view, overfitting is a problem that happens when you
have a perfect fit of your model on the data sample. When this
occurs, the model unfortunately cannot perform accurately against
unseen data, which is usually related to a high generalization er-
ror (Hastie et al., 2009). Standard machine learning techniques aim
to identify the actual function that lies behind the Data Generat-
ing Process (see for example Vapnik, 1998). If the precise equi-
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librium is struck between the ability of the model to learn any
dataset without error and the accuracy achieved on a particular
dataset (the observations), then an appropriate estimation of the
underlying function to be estimated will be attained. This ability
to learn any possible dataset is linked to the notion of the gener-
alization error (also called out-of-sample error in the literature). In
the non-parametric framework, the theoretical generalization error
of a model cannot be calculated in general, but it may be approx-
imated by resorting to test samples or cross-validation. In partic-
ular, in the context of efficiency measurement, envelopment tech-
niques as DEA, which place the efficient frontier as close as possi-
ble to the data sample due to the minimal extrapolation principle,
can correctly measure efficiency for a particular set of observations
(DMUSs) following a sample-specific-based evaluation, but, at the
same time, suffer from overfitting. The DEA model is too close to
the DMUs when the (underlying) efficient frontier is actually lo-
cated above the data cloud. This last feature limits its inferential
capability, at least for small data samples, a point that is impor-
tant when one of the objectives of the study is stating something
about the underlying function behind the Data Generating Process
that produced the observations. One direct impact of this overfit-
ting problem on the results determined through DEA is that an
important part of the DMUs under evaluation are shown as tech-
nically efficient (i.e., the corresponding technical score equals one,
when in fact they are not located on the underlying production
frontier) and, in general, DEA scores are overly optimistic. Some
very recent approaches have highlighted the overfitting problem
suffered by FDH and DEA (see Esteve et al., 2020, Tsionas, 2022,
Valero-Carreras et al., 2022, and Molinos-Senante et al., 2023). In
this section, we have showed how DEA and the new approach esti-
mate the target function f(x) through f (x), given an input profile
x. Next, and as a complement, we are going to show how close the
estimates f(x;) are to the observed output level for each DMU;,
i.e, y¥;, i=1,...,n. Our objective is to illustrate how DEA overfits
the data in comparison with the new approach. In the consid-
ered single-output production setting, a natural (output-oriented)
technical efficiency score can be defined as the ratio ¢; = f *)/vi,
which compares these two quantities, i.e., the estimate f(x;) and
the observation y;. For this reason, and with the objective of illus-
trating the overfitting problem suffered by DEA in comparison with
the new approach, we calculated the mean and variance of the ef-
ficiency score (¢;) determined by both Data Envelopment Analysis
and the additive model based on regression splines (see Table 5).
The results demonstrate that the DEA estimates are closer to the
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Fig. 8. Contour plot comparing the performance of the new approach with DEA in an example with two inputs and one output.

Table 5
Comparison of efficiency scores between the new approach and DEA.

Scenario (#inputs) Sample size The new approach DEA Mean difference
Mean Std. dev. Mean Std. dev.
1 50 1.069 0.010 1.064 0.013 0.54%
100 1.072 0.007 1.068 0.008 0.37%
150 1.074 0.006 1.072 0.007 0.28%
2 50 1.043 0.006 1.039 0.008 0.41%
100 1.047 0.005 1.044 0.006 0.29%
150 1.048 0.004 1.046 0.004 0.23%
3 50 1.211 0.105 1.122 0.103 8.90%
100 1.227 0.061 1.146 0.064 8.16%
150 1.222 0.036 1.150 0.036 7.15%
4 50 1.123 0.033 1.047 0.033 7.57%
100 1.136 0.020 1.064 0.023 7.18%
150 1.150 0.037 1.079 0.039 7.09%
5 50 1.272 0.120 1.194 0.123 7.82%
100 1.336 0.258 1.245 0.279 9.08%
150 1.315 0.284 1.249 0.289 6.62%
6 50 1.140 0.029 1.066 0.031 7.42%
100 1.156 0.023 1.090 0.024 6.59%
150 1.164 0.021 1.102 0.023 6.27%

observed outputs than those provided by the new approach (with
efficiency scores closer to one on average in the case of DEA). How-
ever, it should be noted that the differences in terms of overfitting
between the new approach and DEA in the contexts of one and
two inputs are somewhat minor. By contrast, when we increase
the number of inputs being evaluated, we observe differences by
up to 9% on average. For example, with 5 inputs and 100 units,
DEA suggests that the output produced could be increased by 25%,
while the new approach suggests that the level of output should
augment by 34% (on average). Note that we have already demon-
strated that the new method yields estimates closer to the under-
lying production function than DEA (with smaller bias and mean
squared error in general). In this way, it seems that, in the simu-
lations, DEA presents a better fit of the frontier model on the data
sample in comparison with the additive model based on regression
splines but at the expense of having worse estimates of the under-
lying Data Generating Process (the actual production function).
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5. Conclusions and lines for future work

This paper has built a new bridge between production theory
and machine learning in the literature. So far, these two fields
have been growing exponentially but side by side and separately.
However, the new tendency shows a prospective integration of
the efficiency analysis world into the context of machine learning
(see, for example, the recent papers by Esteve et al., 2023, Esteve
et al., 2020, Valero-Carreras et al., 2021, or Olesen and Ruggiero,
2022). In our case, this has allowed us to introduce a new tech-
nique for estimating production functions through splines and re-
cursive partitioning. The new technique endows an additive ver-
sion of the Multivariate Adaptive Regression Splines (MARS) tech-
nique by Friedman (1991) with shape constraints to estimate a sur-
face that envelops all the data from above and satisfies monotonic-
ity and concavity. These features are linked to the traditional non-
parametric Data Envelopment Analysis (DEA).
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DEA and the new approach share some characteristics, such
as their non-parametric nature and the piece-wise linear shape
of their estimators. Nevertheless, while DEA suffers from overfit-
ting by construction due to the axiom of minimal extrapolation
assumed in the classical literature, the new approach overcomes
this problem through a pruning procedure based on generalized
cross-validation.

Furthermore, the efficacy of the new approach was investigated
through a computational experience. Results have shown that our
proposal generally outperforms DEA and C2NLS with respect to the
mean squared error (MSE). In this way, we have seen that the im-
provement ranges from 3.39% to 86.23% (with a mean value of
48.77%) regarding DEA and from 6.80% to 69.50% (with a mean
value of 20.22%) in the case of C2NLS. As for the bias, we note that
our proposal systematically underestimates the true frontier and
that its value usually decreases when the sample size increases.

The main limitation of the new approach is related to method-
ological issues. Our model is additive in nature, what can limit its
performance when the (unknown) true production function to be
estimated presents interactions between the inputs of the problem.
However, although our model is additive, which a priori represents
a weakness, we have shown using the simulation scenarios taken
from Kuosmanen and Johnson (2010) that the new method can
outperform DEA and C2NLS even in non-additive situations. Nev-
ertheless, in practice, these results will depend on the type of in-
teraction among variables and the degree of curvature, things that
will be unknown by researchers. Therefore, in the case of deal-
ing with real-world databases, we suggest applying several differ-
ent methodologies to get a battery of results in such a way that
researchers may make a robust decision about the estimation of
the production function. In this way, our method could be seen
as a complement to conventional approaches in the field of tech-
nical efficiency measurement. Unlike other methods, our approach
is based on machine learning techniques, which could represent
a fresh perspective when estimating production functions of firms
and public institutions is the focus.

Additionally, our approach allows the estimation of production
functions in many different contexts: banking, education, manage-
ment, public policy and so on. Moreover, rather than estimating
a production function, we could use revenue, expressed in mone-
tary terms, as a response variable and the inputs as covariables and
apply our approach to determine the corresponding revenue func-
tion. Furthermore, the production frontier estimation is a problem
closely related to the edge estimation problem (see, for example,
Daouia et al. 2016). In this regard, see Korostelev and Tsybakov
(1993) for the literature therein on the edge estimation problem
within the area of image reconstruction. Other possible applica-
tions of our approach appear, for example, in medicine, where the
probability of contracting a certain disease depends monotonically
on certain variables, or in environmental pollution where mono-
tonicity applies to the ozone level as a function of the inversion
base temperature (Croux et al., 2012). Another recent area to be
approached through our methodology is the inverse problem for
Hamilton-Jacobi equations and semiconcave envelopes (see, for ex-
ample, Esteve and Zuazua, 2020).

We end this section by introducing several lines of future re-
search. First, we suggest the possibility of extending this novel
approach to the context of multi-output production. Another re-
markable line of study is related to determining a ranking of im-
portance of covariables to the context of production frontiers. To
do this, the approach described in Friedman (1991) based on the
“ANOVA decomposition” could be adapted. Additionally, we re-
sorted to the spline basis functions for the construction of the
estimator. However, other suitable basis functions could be used
as long as they can adapt to the framework of production fron-
tier estimation. In terms of methodological development, there is
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one point to be considered related to how to determine techni-
cal inefficiency through different efficiency measures. Another line
of research is linked to solving the weakness of the computational
cost associated with the new technique. To do this, we could take
advantage of parallel computing to reduce the execution time, es-
pecially sensitive in multi-sample scenarios. Moreover, it could be
interesting to know if the estimator converges to the true pro-
duction function when n — oo and to extend the model to the
case of considering interaction among the inputs. These two lines
seem to open up an interesting avenue for researching for the fu-
ture. Furthermore, the incorporation and treatment of uncertainty
in the model could be considered as another possible remarkable
research line. In this regard, see a survey of previous contributions
on uncertainty and Data Envelopment Analysis in Wen (2015). An
obvious research line to be followed would be applying the new
approach to real databases in a variety of empirical contexts. Fi-
nally, we could also resort to the adaptation of the smoothing pro-
cedures introduced by Friedman (1991) to get a smoothed version
of the estimate of the production function. This estimate should
satisfy the postulates of monotonicity and concavity, something
that is not trivial and deserves future study.
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