Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/38613
eat: An R Package for fitting Efficiency Analysis Trees
Title: eat: An R Package for fitting Efficiency Analysis Trees |
Authors: Esteve, Miriam España Roch, Víctor Javier Aparicio, Juan Barber i Vallés, Josep Xavier |
Editor: The R Foundation |
Department: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Issue Date: 2022 |
URI: https://hdl.handle.net/11000/38613 |
Abstract:
eat is a new package for R that includes functions to estimate production frontiers and technical efficiency measures through non-parametric techniques based upon regression trees. The package specifically implements the main algorithms associated with a recently introduced methodology for estimating the efficiency of a set of decision-making units in Economics and Engineering through Machine Learning techniques, called Efficiency Analysis Trees (Esteve et al. 2020). The package includes code for estimating input- and output-oriented radial measures, input- and output-oriented Russell measures, the directional distance function and the weighted additive model, plotting graphical representations of the production frontier by tree structures, and determining rankings of importance of input variables in the analysis. Additionally, it includes the code to perform an adaptation of Random Forest in estimating technical efficiency. This paper describes the methodology and implementation of the functions, and reports numerical results using a real data base application.
|
Keywords/Subjects: efficiency analysis trees technical efficiency regression trees random forest production frontier R programming |
Knowledge area: CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística CDU: Ciencias puras y naturales: Matemáticas: Análisis CDU: Generalidades.: Ciencia y tecnología de los ordenadores. Informática. |
Type of document: info:eu-repo/semantics/article |
Access rights: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI: https://doi.org/10.32614/RJ-2022-054 |
Published in: The R Journal |
Appears in Collections: Artículos - Estadística, Matemáticas e Informática
|
???jsp.display-item.text9???