Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38611
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFuster Alonso, Alba-
dc.contributor.authorMestre Tomás, Jorge-
dc.contributor.authorBáez, José Carlos-
dc.contributor.authorPennino, Maria Grazia-
dc.contributor.authorBarber i Vallés, Josep Xavier-
dc.contributor.authorBellido, Jose María-
dc.contributor.authorConesa Guillén, David Valentín-
dc.contributor.authorLópez Quílez, Antonio-
dc.contributor.authorSteenbeek, Jeroen-
dc.contributor.authorChristensen, Villy-
dc.contributor.authorColl, Marta-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-01T09:10:43Z-
dc.date.available2025-12-01T09:10:43Z-
dc.date.created2025-
dc.identifier.citationScientific Reportses_ES
dc.identifier.issn2045-2322-
dc.identifier.urihttps://hdl.handle.net/11000/38611-
dc.description.abstractSpecies Distribution Models (SDMs) are widely used in ecology to analyze historical and future patterns of marine species distributions. Given the growing impact of climate change, predicting potential shifts in species ranges has become a key challenge. In this study, we apply Bayesian Additive Regression Trees (BART), a non-parametric machine learning algorithm, to estimate and forecast the global distribution of marine turtle species under different climate change scenarios. We model both individual species and their combined functional group, assess their historical and future habitat suitability, and examine the contribution of key environmental predictors. To evaluate BART’s performance, we conduct a simulation study under two contrasting distributional scenarios: a cosmopolitan and a persistent species. We also test the sensitivity of BART to pseudo-absence data and compare its performance with MaxEnt and Generalized Additive Models (GAMs). Results indicate that BART performs slightly better overall, particularly under pseudo-absence settings, showing higher accuracy and more stable sensitivity and specificity. These findings highlight BART as a reliable alternative for long-term, global-scale species distribution modeling in marine systems.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent17es_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.relation.ispartofseriesVol. 15es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmarine turtleses_ES
dc.subjectglobal scalees_ES
dc.subjectlong-term predictiones_ES
dc.subjectspatial distributionses_ES
dc.subjectenvironmental changees_ES
dc.subjectmachine learninges_ES
dc.subjectBARTes_ES
dc.subjectsimulationes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biología::574 - Ecología general y biodiversidades_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.titleMachine learning applied to global scale species distribution modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1038/s41598-025-20797-xes_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 Machine learning applied to global.pdf

6,07 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.