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Species Distribution Models (SDMs) are widely used in ecology to analyze historical and future 
patterns of marine species distributions. Given the growing impact of climate change, predicting 
potential shifts in species ranges has become a key challenge. In this study, we apply Bayesian 
Additive Regression Trees (BART), a non-parametric machine learning algorithm, to estimate and 
forecast the global distribution of marine turtle species under different climate change scenarios. 
We model both individual species and their combined functional group, assess their historical and 
future habitat suitability, and examine the contribution of key environmental predictors. To evaluate 
BART’s performance, we conduct a simulation study under two contrasting distributional scenarios: 
a cosmopolitan and a persistent species. We also test the sensitivity of BART to pseudo-absence data 
and compare its performance with MaxEnt and Generalized Additive Models (GAMs). Results indicate 
that BART performs slightly better overall, particularly under pseudo-absence settings, showing 
higher accuracy and more stable sensitivity and specificity. These findings highlight BART as a reliable 
alternative for long-term, global-scale species distribution modeling in marine systems.
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The impact of climate change on marine ecosystems has been increasingly recognized as a global phenomenon, 
with numerous studies highlighting its effects worldwide1–4. As environmental conditions continue to change, 
marine species must adapt and potentially shift their distributions to areas with more suitable conditions for 
their survival and reproduction1,5–11. Therefore, understanding the present spatiotemporal distribution of 
marine species and accurately predicting their future changes is a critical challenge in the current context of 
global warming12,13.

For this reason, macroecological approaches have gained importance in recent decades14–21, providing broad 
insights into large-scale patterns of species distributions22. These global approaches are essential for evaluating 
climate change12,13,23, contributing to the development of effective management strategies with global policy 
objectives14,24.

Species Distribution Models (SDMs), also referred to as Ecological Niche Models (ENMs) or Habitat Suitability 
Models (HSMs), are widely used tools for understanding species and community distributions in space and 
their potential shifts over time25,26. The terminology often depends on the focus of the study: SDMs emphasize 
spatial distributions, while ENMs highlight the ecological and niche drivers underlying those distributions27,28. 
In this study, we use SDMs as a general term, encompassing all approaches that estimate species’ ecological 
requirements to predict their distributions across space and time. However, we acknowledged the difference 
between ENMs and SDMs27,28. While ENMs aim to estimate a species’ fundamental ecological niche based on 
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its physiological limits and ecological tolerances, our focus is on SDMs that predict potential habitat suitability 
under changing environmental conditions, particularly climate change scenarios.

Therefore, SDMs allow researchers to link information about the presence/absence of species to key 
environmental drivers to predict where and how a species is likely to be present in unsampled areas or time 
periods29,30. SDMs have provided insights into species distributions’ patterns, species-environment relationships, 
and potential habitat suitability31–35.

Since SDMs have been used in the context of range shifts for the past 30 years, numerous approaches and 
techniques have been developed, each with unique strengths and limitations. Recently, there has been a notable 
trend towards using machine learning methods within SDMs due to their strong predictive capacity, flexibility 
in handling complex and non-linear relationships, and ability to incorporate large dataset30,36.

A promising and innovative alternative to traditional SDMs regression tree methods is the Bayesian Additive 
Regression Trees (BART) approach37,38. BART is a non-parametric Bayesian regression approach that is 
based on a sum-of-trees model and is fundamentally an additive model with multivariate components38. This 
methodology offers some advantages over conventional SDMs, making it an alternative choice for ecological 
research.

One of the key advantages of BART over traditional classification tree methods is its incorporation of prior 
distributions, which limits the influence of individual trees on the overall model. By reducing dependence among 
trees, BART mitigates the issue of overfitting commonly associated with regression trees39. This ensures that no 
single tree dominates the predictions, allowing the model to strike a balance between constructing accurate trees 
and maintaining the flexibility needed to predict species distributions in unsampled areas or future time periods. 
As a result, this feature enhances the robustness and reliability of the model’s predictions40. Furthermore, the 
Bayesian framework of the BART method enables the estimation of prediction uncertainty, a feature that is 
generally absent or computationally expensive in most traditional species distribution modeling techniques41.

In general, BART has been used in the context of SDMs, but existing studies have been limited to local or 
regional scales41–48. To date, there has been no comprehensive application of BART to a broader and larger 
spatial extent for estimating the effects of climate change on marine species. Therefore, we present BART as an 
alternative for modeling on a global scale that allows the user to update data or include different drivers and to 
have a deep understanding of uncertainty. There is a significant need for more research that directly addresses 
global modelling approaches, highlighting the novelty and relevance of our contribution to the field. For this 
reason, our main goal is to apply BART on a global scale for the estimation and prediction of spatial-temporal 
distributions of different marine species and their relationship with environmental variables.

Our hypothesis is that BART may be a powerful approach to predict historical and future scenarios about 
the distribution of target species and functional groups, as well as their relationship with key environmental 
variables, on a global scale. To test our hypothesis, we conducted a case study on the functional group of marine 
turtles to assess the applicability of BART. This group includes all seven existing species of marine turtles, which 
are distributed very differently in the marine environment49,50. Moreover, ongoing research discuss how marine 
turtles face imminent threats to their survival in the wake of climate change51–53. This information, combined 
with their different distribution patterns, makes marine turtles an ideal functional group for testing the effects 
of climate change on a global scale. The study we present here applies the BART method to obtain native ranges, 
potential habitat, relations with environmental variables, and distribution projections under different future 
scenarios of climate change using outputs from Earth System Models (ESM) freely available through the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP), an initiative and framework to establish consistent 
climate impact simulations,54,55 and Fish-MIP initiative (https://fish-mip.github.io/). Due to the uncertainty 
related to the predictions of climate change effects, we considered two different ESM set of drivers for our case of 
study: GFDL-ESM4 and IPSL-CM6A-LR and two different climate scenarios based on carbon emission.

Although a real case study can shed light on the predictive capability of a model, the validation associated 
with such study is contingent upon errors in observations, as we lack knowledge of the true current or future 
distribution of the species. For this reason, a simulation protocol has also been developed, allowing us to 
investigate the results of a hypothetical species. Then, through various random samplings of simulations, we can 
obtain presence, absence and pseudo-absence data to fit the model and assess its predictive capacity56. In this 
study, we assess two different simulation scenarios: one considers a hypothetical species that is spread over the 
entire domain (‘cosmopolitan’ species), while the second scenario considers a species that remains permanently 
in a specific area (‘persistent’ species). To evaluate the performance and robustness of the BART model, we 
compare its results with those obtained using two widely applied species distribution modeling techniques: 
MaxEnt and Generalized Additive Models (GAMs).

Results
Overview of global BART analysis workflow
Our study is divided into two sections: (1) a simulation study, where we illustrate the performance of BART in a 
presence/absence and pseudo-absences simulation and modeling framework, comparing it to other models such 
as MaxEnt and GAMs; and (2) a case study, where we present the results obtained from BART for functional 
group of the marine turtles (Fig. 1).

Therefore, section 1) aims to assess the capacity of BART to project in space and time the distribution of 
different species. For this purpose, we simulate two different scenarios of probability according to the behavior 
of a species: first, a cosmopolitan species, where the species is dispersed over the entire domain, and second, a 
persistent species, where we observe a concentrated spatial distribution. Then, we perform 50 different random 
samplings to obtain presence/absence and pseudo-absences data to fit 50 different models and predict using 
BART, MaxEnt and GAMs. This allows us to obtain error measures of the predicted spatio-temporal distribution 
with respect to the simulated ground truth.
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On the other hand, section 2) is based on applying BART on a global scale using the marine turtle’s functional 
group as a case study. Hence, we develop two different models: the native range model and the suitable habitat 
model. The main difference between these two models is that for the native range, we include the latitude 
and longitude of observations as covariates in the model, while the suitable habitat model is only based on 
environmental covariates. The inputs used are georeferenced occurrence data from GBIF and historical, past, 
and future projections of environmental variables from ISIMIP. The common output of the native range and 
suitable habitat models is a map representing the historical spatial distribution from 1950-2014 of each individual 
species. Then, using the suitable habitat model, we projected the distribution for each year from 1950 to 2100. 
The results are validated using a k-fold cross-validation and real observations (2015–2023).

Simulation
Regarding the simulation framework, both simulation scenarios of the occurrence data of a hypothetical 
cosmopolitan and persistent species were developed by considering several effects: (1) a spatial-temporal effect, 
(2) a bathymetric effect, (3) a temperature effect, and (4) a temporal trend. Therefore, a series of parameters 
was set for all terms in Eqs. (1) and (2) (see the Methods section). Additionally, we assessed the performance of 
BART, MaxEnt and GAMs to the generation of pseudo-absences for both scenarios: (1) cosmopolitan, and (2) 
persistent species.

Cosmopolitan species
The evolution of the simulated probability of presence for a cosmopolitan species is characterized by a broad 
and continuous distribution throughout space and time, over a 20-year period across a hypothetical landscape 
(Fig. 2a). The simulation incorporates a correlated spatial effect, with range r = 3.5, variance σ = 1, and temporal 
correlation ρ = 0.7; a second-degree polynomial for the bathymetry effect (constant over time), with coefficients 
β1X1(s) = −1.5 and β2X1(s) = −1.1; and bathymetry values ranging from 0 to 800 meters, calculated using 
the formula 100 · log(xy + 1), where x and y are the spatial coordinates; temperature was modeled as a linear 

Fig. 1.  Overview of the methodological framework used in this study. The workflow is divided into two 
components: (1) a simulation study with two hypothetical species distribution patterns (cosmopolitan and 
persistent), where presence, absence, and pseudo-absence data were generated to evaluate and compare the 
performance of three modeling approaches (BART, MaxEnt, and GAMs) across 50 replicates; and (2) a real 
case study using georeferenced records of marine turtles, where the BART model was used to predict species 
distributions based on historical and future environmental conditions. Model performance was assessed using 
spatial and temporal validation metrics, including sensitivity, specificity, accuracy and F1 score.
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effect using the formula 
√

y + 1 + 10, and since temperature is a dynamic variable, we added 0.5 units per year 
to represent a temporal increase; the temporal trend was simulated using an autoregressive model of order 1 
(AR1), with ρt = 0.7. All predictor terms (as described in Equation 1) were summed and transformed to the 
probability scale (ranging from 0 to 1) using the inverse of the logit link function.

Fig. 2.  Figures (a) and (b) are the simulation of the probability distribution in space and time for a 
cosmopolitan and persistent species scenarios respectively. The time window is 20 years, and we can observe 
changes over space and time. Figures (c) and (d) are the results of BART models sensitivity, specificity, and 
accuracy for the cosmopolitan and persistent scenarios respectively. We have calculated the mean and quantiles 
(0.025 and 0.975) over the 50 replications conducted. Figures (e) and (f) are the results of accuracy for MaxEnt, 
GAMs, and BART models perfomance including the real absence and pseudo-absence scenarios.
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After simulating the probabilities, we performed 50 samplings to obtain the presence/absence data for fitting 
the BART model (Eq. 3). Then we simulate from a Bernouilli distribution to distinguish between presence and 
absence according to the simulated probability. It should be noted that, for each sampling, we selected a total 
of 50 observations. Once we had the presence/absence data, we were able to fit the models and then make 
predictions across both spatial and temporal dimensions. In the repository, we can observe all the predictions in 
space and time for each replica. Note that we excluded data from years 18, 19, and 20 during the fitting process. 
This exclusion allowed for the subsequent projection of the entire distribution into the future.

Figure 2c presents the median, along with the 0.025 and 0.975 quantiles, of the validation measures (sensitivity, 
specificity, and accuracy) for all models fitted with BART. We observe high specificity at the beginning of the 
study period, while the sensitivity is lower, particularly in the 11-year period. This pattern remains constant for 
20 years, where the specificity increases, leading to a decrease in sensitivity. However, when we assess accuracy, it 
consistently remains close to one, around 0.8, throughout the entire period. In Figure S13 of the supplementary 
material, we observe the values of sensitivity, specificity, and accuracy for the pseudo-absence scenario, where 
the results follow the same pattern as those in Fig. 2c for all metrics but with lower values, although accuracy 
always remains higher than 0.5, with values around 0.7. Figure 2e illustrates the accuracy of MaxEnt, GAMs, and 
BART models using real and pseudo-absence data, with BART achieving the highest accuracy in both scenarios. 
Specifically, BART reached an accuracy of 0.78 with real absences and 0.68 with pseudo-absences. MaxEnt 
showed an accuracy of 0.74 with real absences and 0.62 with pseudo-absences, while GAMs had the lowest 
performance, with values 0.73 and 0.61, respectively.

Persistent species
In contrast to the cosmopolitan scenario, the distribution of a persistent species is spatially restricted and 
temporally consistent, reflecting strong site fidelity and environmental specialization (Fig. 2b). This simulation 
was based on Eq.  (2), with adjusted parameter values, where the range and variance of the spatio-temporal 
effect were set to 5.6 and 1, respectively; the autoregressive coefficient for the spatio-temporal component was 
ρU = 0.1, and for the temporal trend, ρt = 0.7; bathymetry and temperature covariates followed the same 
functional forms as in the cosmopolitan scenario, but with different fixed coefficients, where bathymetry was 
modeled with β1X1(s) = 7.5, indicating a strong positive association, and temperature with β2X2(s,t) = −0.8, 
reflecting a moderate negative effect. Based on these probability maps, we performed 50 replicate samplings 
of presence/absence and pseudo-absence data, following the same methodology as used for the cosmopolitan 
species.

Figure 2d displays the median, along with the 0.025 and 0.975 quantiles, of the validation metrics (sensitivity, 
specificity, and accuracy) across all replications for the BART model. In this scenario, all metrics remained 
consistently high throughout most of the time series, particularly in years where predictions were limited to 
unsampled locations but not extrapolated in time. However, a decline in sensitivity, specificity and accuracy was 
observed in the final years (18–20), which were used for temporal extrapolation. Despite this decline, accuracy 
remained above 0.75 even in the projection years. Supplementary Figure S14 shows the corresponding metrics 
under the pseudo-absence scenario. While the trends were similar to those in Fig. 2d, the values were slightly 
lower across all metrics. Figure 2f displays the accuracy of MaxEnt, GAMs, and BART models using both real 
and pseudo-absence data. Again, BART outperformed the other models in both scenarios. Specifically, BART 
achieved an accuracy of 0.94 with real absences and 0.75 with pseudo-absences. MaxEnt reached 0.91 and 
0.73, respectively, while GAMs showed the lowest accuracy values, with 0.92 using real absences and 0.72 with 
pseudo-absences.

Case study
Species predictions
Here, we present the results for the present period (1950–2014) and the predicted changes for the future (2015–
2100) for two species, along with their response functions to environmental variables. The two species chosen 
are the Australian flatback sea turtle Natator depressus and the leatherback sea turtle Dermochelys coriacea, 
both with very different spatial distributions. The first species is distributed mainly along the Australian coast, 
while the second species is widely distributed throughout the world49,50. The detailed results and figures for the 
remaining species can be found in the supplementary material (see Section 2 species predictions).

Since our analysis follows a Bayesian approach, each pixel in the resulting maps contains a full posterior 
predictive distribution rather than a single point estimate. This allows for a more comprehensive representation 
of species distributions by incorporating uncertainty directly into the predictions. In the figures presented in 
the results section, we show the posterior mean probability of presence to summarize these distributions (Figs. 
3 and 5). In section 2 of the supplementary material, we present both the posterior mean and the associated 
uncertainty, represented by the 2.5% and 97.5% quantiles.

Results are shown for both the native range and the suitable habitat models, producing different spatial 
distributions predictions (Fig. 3). Native ranges show much narrower predicted areas of high probability compared 
to suitable habitats, which is expected given that native ranges reflect historically observed distributions and are 
limited by the occurrence data used as covariate in the model calibration. Suitable habitat models, on the other 
hand, highlight regions with favorable environmental conditions, even beyond the areas where the species has 
been recorded. Furthermore, in section 2 of the supplementary material we illustrate the results of both models 
(native range and suitable habitat) for each of the ESMs (GFDL-ESM4 and IPSL-CM6A-LR ESM), resulting in 
very similar probability maps for both species historically.

The difference between the posterior mean probability of presence for the future period (2090–2099) and 
the historical baseline (1950–2014) is used to illustrate changes in suitable habitat under two climate scenarios, 
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SSP126 and SSP585 (Fig. 3). These difference maps highlight areas of potential habitat gain or loss. The maps of 
predicted probabilities for the future period are provided in section 2 of the supplementary material.

For the species Natator depressus, our results project a reduction in potential habitat along the northern 
coast of Australia and gains in the Northern Hemisphere (Fig. 3). In the case of Dermochelys coriacea, a loss 
of potential habitat is observed in the Northern Hemisphere with GFDL-ESM4, while gains are projected in 
the south (Fig. 3). For both species, the IPSL-CM6A-LR ESM projects greater range expansions, particularly 
in northern regions, whereas the GFDL-ESM4 model indicates more pronounced losses in the Atlantic Ocean 
(see section 2 of the supplementary material). Moreover, under the SSP126 scenario, gains and losses appear less 
distinct compared to the SSP585 scenario for both species (Fig. 3).

Figure 3 also shows the contribution of environmental variables and the estimated non-linear relationships. 
For both species, the two variables that contribute the most to the model are bathymetry and sea surface 
temperature (Fig. 3). However, it is worth noting that all variables in the model have a similar contribution 
(Fig. 3). In the non-linear relationships with the response variable, it can be seen that for bathymetry, both 
species have their optima at low bathymetric values (Fig. 3). Whereas for SST, the behavior is sigmoidal, their 
distribution increases until reaching a maximum and then starts to decrease (Fig. 3).

In the same way, the native ranges and suitable habitats for other five species are presented in section 2 
species predictions (Figures S4, S5 and S6) of the supplementary material. Notably, Caretta caretta appears to 
have a distribution concentrated in sub-tropical latitudes and along the west coast of Africa (Figure S2 in the 
supplementary material). Lepidochelys olivacea seems to have a more southern distribution compared to Caretta 
caretta, along with Eretmochelys imbricata and Chelonia mydas (Figure S2, S3 and S4 of the supplementary 
material). In contrast, Lepidochelys kempii exhibits a more confined distribution in the Atlantic Ocean and 
Europe.

Figures S6, S7, and S8 of the supplementary material have information on suitable habitat changes for these 
five species, as well as their contributions and relationships with environmental variables (Figures S9, S10, 
and S11 in the supplementary material). Most species appear to experience significant losses around tropical 
zones, except for L. kempii, where the losses are concentrated on the Atlantic North Coast. The spatial results 
obtained from both ESMs seem to agree in general terms, with the SSP585 climate scenario showing much more 
pronounced losses and gains for all species.

Global species richness hotspots for marine turtles are shown, with values ranging from 0 to 6 (Figure S12). 
These hotspots indicate regions where multiple species coexist, with warmer colors representing higher richness. 
The maximum observed value is 6, as it is biologically unfeasible for all seven species of marine turtles to overlap 
in the same area. This limitation is due to the restricted distributions of certain species, such as N. depressus, 
which is confined to the Indo-Pacific region, and L. kempii, which occurs only in the Atlantic Ocean.

Fig. 3.  The first row illustrates the native range and mean probability of suitable habitat presence for Natator 
depressus and Dermochelys coriacea, while the second row shows the difference between historical and future 
suitable habitats under two climate change scenarios: SSP1-2.6 and SSP5-8.5. The third row represents the 
contribution of bathymetry, temperature, and other drivers to the model, as well as the functional responses. 
All maps correspond to results from the GFDL-ESM4 model.
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Median values for four summary statistics were computed for each ESM and species (Table 1). Results 
show that across all metrics, the model performance is notably strong, with most values close 1. While there 
is a slight performance difference favoring GFDL-ESM4 ESM over IPSL-CM6A-LR, this discrepancy is small. 
Alternatively, to validate our future projections, we compared maps projected for the period 2015–2023 with 
actual observations obtained from GBIF during the same time frame. This comparison allowed us to calculate 
the sensitivity for each climate scenario and ESM. Our results indicate high levels of sensitivity, with GFDL-
ESM4, reaching 0.77 and 0.79 for the SSP126 and SSP585 scenarios, respectively. IPSL-CM6A-LR model also 
demonstrates strong performance, achieving sensitivity values of 0.75 for both SSP126 and SSP585 climate 
scenarios.

Temporal trends in the mean probability of suitable habitat from 1950 to 2100 are shown for seven marine 
turtle species and their aggregated functional group under two climate scenarios, SSP126 and SSP585, using 
two ESMs: GFDL-ESM4 and IPSL-CM6A-LR (Fig. 4). Each panel displays annual mean values, with black dots 
representing yearly estimates and smoothed lines indicating trends under SSP126 (blue) and SSP585 (orange).

Under GFDL-ESM4, most species exhibit higher probabilities of suitable habitat under SSP585 compared to 
SSP126, especially in the latter half of the century. Species such as C. mydas, L. kempii, and E. imbricata show 
pronounced increases in suitability under SSP585, whereas L. olivacea shows a notable decline over time in both 
scenarios. In contrast, D. coriacea shows reduced suitability under SSP585 but relatively stable trends under 
SSP126. IPSL-CM6A-LR model projects more dramatic increases in suitable habitat under SSP585, particularly 
for N. depressus, C. caretta, and C. mydas. Some species, such as L. olivacea, show continuous declines under 
both scenarios. The functional group trends largely reflect the dominant patterns observed across species, with 
increasing probabilities under SSP585 and more stable or moderate changes under SSP126. Overall, SSP585 
consistently predicts higher gains in suitable habitat, but with strong interspecific and model based variation in 
both direction and magnitude of change.

To assess long-term changes in habitat suitability, we calculated the mean probability of suitable habitat for 
each species and their functional group during the historical period (1950–2014) and compared it to the mean 
for the final decade of projections (2090–2099). The resulting percentage change is reported under two Earth 
System Models (GFDL-ESM4 and IPSL-CM6A-LR) and two climate scenarios (SSP126 and SSP585) (Table 2).

Under the GFDL-ESM4 model, species responses vary substantially. For example, E. imbricata shows the 
greatest positive change, with a 45.59 % increase under SSP585, while L. olivacea exhibits the most pronounced 
decline, with a 44.51 % reduction under the same scenario. Most species experience greater increases under 
SSP585 than SSP126, except for C. caretta, which shows slight improvement under SSP585 (1.97 %) relative to a 
stronger decline under SSP126 (4.83 %).

In contrast, the IPSL-CM6A-LR model projects consistently stronger positive trends under SSP585 for most 
species. Notably, E. imbricata, D. coriacea, and N. depressus show large projected increases in suitable habitat, 
exceeding 47 %, with E. imbricata reaching 62.18 %. However, not all species benefit; C. caretta and L. olivacea 
show declines under both scenarios, with the strongest losses under SSP585.

Functional group predictions
The spatial distribution of the functional group’s native range, current suitable habitat (1950–2014), and future 
suitable habitat (2089–2099) is shown under two climate scenarios (SSP126 and SSP585) and two Earth System 
Models (GFDL-ESM4 and IPSL-CM6A-LR) (Fig. 5). Each row in the figure corresponds to a different model, 
and the outputs represent ensemble projections obtained by aggregating the results across all species, using the 
median probability value for both historical and future periods.

GFDL-ESM4

Species Sensitivity Specificity Accuracy F1  score

Natator depressus 0.98 0.98 0.98 0.98

Dermochelys coriacea 0.80 0.84 0.82 0.82

Caretta caretta 0.94 0.90 0.92 0.92

Lepidochelys olivacea 0.92 0.93 0.92 0.92

Chelonia mydas 0.93 0.92 0.92 0.92

Lepidochelys kempii 0.97 0.98 0.98 0.98

Eretmochelys imbricata 0.95 0.94 0.95 0.95

IPSL-CM6A-LR

Natator depressus 0.97 0.97 0.97 0.97

Dermochelys coriacea 0.73 0.83 0.78 0.77

Caretta caretta 0.90 0.88 0.90 0.90

Lepidochelys olivacea 0.90 0.91 0.90 0.90

Chelonia mydas 0.91 0.89 0.90 0.90

Lepidochelys kempii 0.96 0.97 0.96 0.96

Eretmochelys imbricata 0.93 0.94 0.93 0.93

Table 1.  Different error measures for each species and ESM results (GFDL-ESM4 and IPSL-CM6A-LR). We 
have calculated sensitivity, specificity, accuracy, and F1 score.
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The maps display both the posterior mean probability of presence and the associated uncertainty for native 
ranges and current suitable habitats (Fig. 5). Uncertainty is computed as the range between the 97.5% and 2.5% 
percentiles of the posterior predictive distribution. Across both models, uncertainty remains relatively narrow, 
with the lowest levels observed in the native range estimates, likely due to the strong constraint imposed by 
occurrence data (Fig. 5). The highest probabilities for the native range are concentrated along the eastern coast 
of the United States and the northern coast of Australia, while suitable habitat projections highlight a broader set 

Species

GFDL-ESM4 IPSL-CM6A-LR

SSP126 SSP585 SSP126 SSP585

Natator depressus 1.81 2.21 12.88 47.14

Dermochelys coriacea −2.62 −6.97 10.53 57.12

Caretta caretta −4.83 −1.97 −14.72 −23.25
Lepidochelys olivacea −24.31 −44.51 −1.45 −29.35
Chelonia mydas 11.70 40.11 9.17 41.63

Lepidochelys kempii −2.85 4.45 36.68 −9.31
Eretmochelys imbricata 21.38 45.59 11.74 62.18

Functional group −0.80 3.51 26.58 43.98

Table 2.  Percentage (%) of increase or decrease of the suitable habitat’s mean probability between the historical 
suitable habitat (1950–2014) and the last ten years of the future suitable habitat’s projections (2089–2099).

 

Fig. 4.  Changes over time in the mean probability of suitable habitat. The x-axis represents the years from 1950 
to 2100, while the y-axis represents the mean probability for each year of the projected suitable habitat. The 
orange line represents the climate scenario SSP585, and the blue line represents the SSP126 climate scenario. 
Dots represent the mean probability calculated for each year.
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of coastal regions with favorable environmental conditions (Fig. 5). In contrast, the lowest probabilities across 
all habitat types and models are consistently found near the polar regions (Fig. 5).

Future conditions are also shown for the period 2089–2099, including both the projected mean probabilities 
and the spatial differences relative to the current suitable habitat (Fig. 5). These maps highlight areas where 
habitat suitability is expected to increase or decrease under the two climate scenarios, SSP126 and SSP585. The 
results reveal clear differences between native range and projected suitable habitat, and indicate a poleward 
shift in suitable areas. These changes are more pronounced under the SSP585 scenario, which shows broader 
expansions of suitable habitat, especially across temperate regions (Fig. 5).

Complementing the spatial projections, Fig. 4 and Table 2 summarize the temporal trends and quantify the 
overall percentage change in habitat suitability from the historical period to the end of the 21st century. Under 
the SSP585 scenario simulated by IPSL-CM6A-LR, the mean probability of suitable habitat increases by 43.98% 
in the final decade of projections compared to the historical baseline. In contrast, projections from GFDL-ESM4 
show smaller changes, with a 0.80% decrease under SSP126 and a slight 3.5% increase under SSP585.

Discussion
The results from this study underscore the strength of Bayesian Additive Regression Trees (BART) as a robust 
and versatile tool to model species distributions on a global scale. The simulations and the marine turtles case 
study not only validate the predictive capacity of BART but also illustrate its ability to adapt to complex spatio-
temporal patterns in diverse ecological scenarios. As a flexible, non-parametric machine learning approach, 
BART can handle non-linear relationships and integrate multiple environmental variables while avoiding 
overfitting through its Bayesian framework.

According to the simulation results, BART consistently provided accurate predictions for both cosmopolitan 
and persistent species. All models included in this simulation study (GAMs, MaxEnt and BART) were able to 
capture key patterns in spatial and temporal distributions, maintaining high sensitivity, specificity, and accuracy 
throughout the simulated periods. However, BART outperformed traditional methods such as GAM and 

Fig. 5.  Functional group results of the native ranges and suitable habitats (1950–2014) and future suitable 
habitats (2015–2100) are provided. Rows one and two represent the spatial predictions for the current 
distribution, while the third and fourth rows depict the predictions for the last ten years of projections 
(2089–2099), including the difference between the projections and the current suitable habitat. All of these are 
represented for both climate scenarios and ESMs.
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MaxEnt, especially under conditions where true absence data were not available and pseudo-absences had to be 
generated. Therefore, our results show that BART, when combined with simulation-based evaluations, represents 
a strong alternative for modeling species distributions, particularly under conditions of data uncertainty and 
limited absence information.

Regarding the marine turtles case study, our results highlight that climate change stands as a significant 
threat to many marine species57. Among them, marine turtles are commonly considered susceptible to the 
impacts of climate change due to the important role of temperature in their life cycle57,58. In 2009, the IUCN 
Red List categorized most of the marine turtles species as vulnerable, endangered, or critically endangered59–65. 
Therefore, preserving marine turtle populations under new climate change conditions demands global actions 
to reduce its impact and bolster turtle resilience57.

Our study successfully tested the capability of global SDMs to investigate the global distribution of marine 
turtles and project future potential habitats under different scenarios of climate change. In fact, our results 
highlight the heterogeneity distribution of such a diverse group and shows the divergence in future projections 
according to specific species. While some species are likely to face important challenges in the future and may 
experience declines in available suitable habitats, others are projected to expand their potential habitats. These 
results highlight the need for management actions to be tailored to specific species and regions.

Therefore, based on the future suitable habitats obtained in our research, future studies could focus on 
analyzing the ability of different species of marine turtles to reach this new potential habitat66. It’s important to 
consider that even if a habitat is suitable in terms of environmental conditions, factors such as proximity or other 
non-environmental drivers may prevent the species from reaching that new potential habitat67–69.

Model results also confirm the important role of sea temperature to drive species distributions, and specifically 
the distribution of marine turtles. The increase in sea surface temperatures due to global warming can have 
various impacts on marine turtles, affecting their habitats, food sources, reproductive patterns, and overall 
survival70. For example, rising sea levels and increased temperatures can lead to the loss of nesting beaches for 
marine turtles. Coastal erosion can destroy nesting sites, making it challenging for turtles to find suitable areas 
to lay their eggs71. In the past decade, there has been an observed rise in sporadic nesting occurrences of sea 
turtles72, notably linked to unusual increases in Sea Surface Temperature (SST)73.

In the current context of conservation and management of marine turtle, another important threat to these 
species today is bycatch in fishing gears74,75. As mentioned, our results can be used to identify current hotspots of 
species richness of marine turtles and be used to minimize fishing practices in those areas with higher risk of by 
catch. Consequently, an expansion of suitable areas for marine turtles to specific areas should be done minimizing 
the risk of interactions with fishing gear. This brings to light the intricate balance between conservation efforts 
and the unintended consequences that may arise from increased suitable habitats intersecting with fishing 
activities.

Overall, forecast models such as the ones presented in the current study could help to inform conservation 
efforts of marine turtles, and to minimize incidental capture in fishing gear, potentially through the establishment 
of protected marine areas. In fact,76 proposed the use of Regional Marine Turtle Management Units (RMUs) as a 
framework for prioritizing conservation across multiple scales of sea turtles. However, this RMU overview could 
completely change due to climate change. While expanding suitable areas for marine turtles is crucial for their 
conservation, it necessitates a comprehensive understanding of the intricate interplay between habitat availability, 
fishing activities, and the broader ecosystem dynamics. Integrating these complexities into conservation models 
and strategies is imperative to ensure the long-term survival of marine turtle populations.

Although we acknowledge that BART is a useful tool for solving ecological issues, our study also has some 
limitations. One main concern is the uncertainty linked to the data we used. We relied on the GBIF database, 
which may have a large amount of uncertainty within its observations. Despite that, we have followed standard 
procedures to clean up and improve the quality of the data. Similarly, environmental drivers could involve 
significant uncertainty, particularly in future projections. To partially account for some of the uncertainty, we 
utilized two different Earth System Model (ESM) outputs, ensuring that we do not rely only on a single set of 
drivers. Indeed, for some species of marine turtles, GFDL-ESM4 and IPSL-CM6-LR lead to different results in 
terms of future potential habitats. This raises the need of considering the uncertainty related to ESMs when we 
use environmental drivers as inputs, which has been already observed in previous studies77.

Another limitation is on how we generated pseudo-absences. Since we lack absence data, we had to create 
pseudo-absences. We have tried to make this in a way that does not heavily impact the results, using random 
generation and equal amounts of absences and presences. Furthermore, to address these concerns, we conducted 
a simulation study to better assess the performance of BART. This helped us to have a more reliable understanding 
of the tool’s capabilities, particularly in combination with a rigorous case study. In addition, while the BART 
model does not explicitly incorporate spatial autocorrelation, recent extensions of the method have begun to 
address this limitation, and exploring such approaches represents an important direction for future research78.

Despite the valuable utility of SDMs in estimating distribution changes over time, there is an ongoing need 
to enhance these models79. Combining complementary models can produce better results, providing a more 
comprehensive understanding of species behavior80. For example, data from databases such as GBIF often come 
from various sources, making the use of different SDMs depending on the type of data a key ongoing topic in 
SDM research81–84. Moreover, it is important to note that our predictions do not account for changes in ecological 
relationships, such as prey-predator dynamics or changes in key demersal habitats, nor other crucial factors 
like fisheries mortality. Changes in sea temperatures can alter the distribution and abundance of marine turtle 
prey, such as jellyfish, crustaceans, and sea grasses. This can impact the feeding habits of turtles and affect their 
growth and health but our results can only capture this implicitly. In addition, marine turtles rely on coral reefs 
for food and shelter. Increased sea temperatures can lead to coral bleaching events, which reduce the quality and 
availability of habitat for turtles and their prey. This is the case for Eretmochelys imbricata, which exhibits strong 
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associations with coral reef ecosystems, feeding predominantly on sponges85. Hence, their distribution might be 
more closely linked to food availability than to other environmental factors. This underscores the complexity 
of factors governing the distribution and habitat preferences of marine turtles, suggesting that conservation 
strategies should consider specific dietary needs and habitat dependencies of individual species. Hence, it’s 
relevant to integrate models, such as SDM and MEMs, to account for these additional relationships80,86. As such, 
our findings have significant potential value for parameterizing MEMs in order to improve the overall accuracy 
of predicted spatial-temporal species distributions of marine species, such as marine turtles, globally.

Due to the potential use of global SDMs, it is crucial to continue developing tools that allow us to assess the 
past, present, and future status of marine species, such as marine turtles87. In this context, the results obtained 
in this study highlight the ability of machine learning models such as BART to predict changes in the current 
and future habitats of marine species, making these models a valuable approach for assessing management and 
conservation efforts37. Our study shows how BART can be a reliable tool for predicting both current and future 
habitats of marine turtles on a global scale. We anticipate significant developments in both current and future 
applications of global SDMs approaches.

Methods
This section includes the methodological details of our case study and the simulation study. The entire analysis 
was conducted using the R programming language88 and all code is available in GitHub.

Simulation
We conducted a simulation designed to corroborate the predictive capabilities of BART in both spatial and 
temporal dimensions. This simulation involved two specific scenarios: (1) simulating a cosmopolitan species 
dispersed across the entire domain, and (2) simulating a persistent species with consistent spatial and temporal 
patterns. Additionally, we included an analysis to assess how sensitive the BART model is to the generation of 
pseudo-absences, further ensuring the robustness of its predictions. To contextualize the performance of BART, 
we also compared its results with those obtained using traditional species distribution modeling approaches, 
specifically MaxEnt and Generalized Additive Models (GAMs). Through this process, our objective was 
to provide further evidence supporting the reliability of BART to accurately predict the dynamics of species 
distribution over space and time.

Simulation allowed us to replicate the behavior of a random variable in both space and time under controlled 
conditions, such as the probability of presence of a species population. Therefore, the first consideration in 
simulation is understanding the factors influencing our variable of interest and developing a model that accounts 
for its nature. Typically, we lack information about the entire population and work with a sample instead. In such 
cases, we propose a model and make inferences about its parameters to obtain representative insights into the 
population. However, when simulating the entire population, we have knowledge of the parameters, enabling us 
to assess the accuracy of our model estimates89.

For a more detail explanation and figures of the simulation process refer to the following vignettes.

Spatio-temporal occurrence simulation scenarios
The probability of the presence of a given target species is commonly influenced by various external factors 
(e.g., environmental, anthropogenic, etc.) as well as spatially structured biological processes (e.g., predation, 
competition, etc.). Moreover, Ref.90 argue that all species, in one way or another, exhibit spatial structure. 
However, considering all the factors that affect the probability distribution of a target species in the modeling 
is practically impossible. For this reason, we have simplified the reality of our response variables taking into 
account two environmental variables (temperature and bathymetry) as essential drivers to explain distributions, 
a temporal dependence over the years, and a spatial-temporal effect related to species movement and dispersal. 
This selection was made considering that temperature and bathymetry typically play a key role in the spatial 
and temporal distribution of marine species91. Additionally, Ref.92 discuss how incorporating a spatial effect can 
enhance prediction accuracy and mitigate the impact of variables not considered in the modeling. Hence, the 
simulation models for the different scenarios (cosmopolitan and persistent species) are formulated as follows: 

	1.	 Cosmopolitan species

	

Y (s, t) ∼ Bernoulli(π(s, t)),
logit(π(s, t)) = β0 + f1(t) + f2(X1(s)) + β1X2(s, t) + U(s, t),

� (1)

	 where, the response Y(s, t) represents the occurrence (presence/absence) of the cosmopolitan species at time t 
in the location s following a Bernoulli distribution with parameter π(s, t); π(s, t) is linked to the predictor by 
the logit link function; β0 is the intercept; f1(t) stands for the temporal trend in the year t; f2(·) is a determin-
istic function for the bathymetry (X1(s)); and β1 is the parameter associated to the temperature (X2(s, t)). 
Lastly, U(s, t) refers to the spatio-temporal structure.

	2.	 Persistent species

	

Z(s, t) ∼ Bernoulli(π(s, t)),
logit(π(s, t)) = β0 + f1(t) + β1X1(s) + β2X2(s, t) + U(s, t),

� (2)
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	 where the response Z(s, t) represents now the occurrence (presence/absence) of the persistent species at time t in 
the location s following a Bernoulli distribution with parameter π(s, t); β1 is a fixed effect for the bathymetry 
X1(s); and β2 is the parameter associated to the temperature X2(s, t); and the remaining terms are those in 
1.

With the model structure determined to start simulating the occurrence data of both scenarios 
(Y (s, t) and Z(s, t)), some explanation is warranted to describe how to perform these simulations, in 
particular, how to deal with each one of the terms included in the predictors in Eqs. (1) and (2). First, the spatio-
temporal structure is simulated as a Gaussian Markov Random Field (GMRF) correlated with an autoregressive 
AR(1) model with parameter of autocorrelation ρsp

93. Secondly, we simulate species-specific depth preferences. 
Particularly, for the bathymetry covariate, a range between 0-800 meters was simulated, with a non-linear effect 
for the cosmopolitan species scenario f(X1(s)) and a linear effect for the persistent species scenario β1X1(s). 
Last, for the temporal trend f(t), changes in the probability values over time are included by simulating a vector 
of values from an autoregressive model of order 1 with parameter of autocorrelation ρt.

Once the predictor terms have been obtained, the occurrence of both species (Y(s, t) and Z(s, t)) has to be 
determined by using a Bernoulli distribution. Then, once we have obtained the simulated presence/absence 
data that will be fitted with the BART model (Eq. 3), we need to perform several random samplings of each 
simulation. In this case, we conducted 50 samplings for each simulation scenario, allowing us to replicate the 
simulation and ensure the robustness of the analysis. Additionally, beyond fitting the model with true absence 
data, we also generated pseudo-absence data by randomly selecting points of presence and absence in the 
sampling process.This process of generating pseudo-absences was also repeated 50 times, giving us a total of 100 
BART models to fit per species (50 with true absences and 50 with pseudo-absences). This approach enabled 
us to compare the performance of the models using true absence data versus pseudo-absence data, providing a 
more comprehensive understanding of the model’s predictive capabilities under different scenarios. For model 
validation, we calculated three commonly used measures: sensitivity, specificity, and accuracy. To achieve 
this, we compared the estimated values (whether they indicate presence or absence) with the actual simulated 
presence or absence data. This process allowed us to determine how effectively our model assigns the correct 
status of presence or absence in relation to the simulated ground truth.

Case study
The focus of this study is to estimate and predict the probability of presence over space and time for the marine 
turtles functional group (refer to Table S1 of supplementary material) for biological information about the 
species). In order to achieve our goal, a series of steps were carried out. First, presence data of each marine turtle 
species and environmental variables potentially driving their distribution were extracted and cleaned. Then, the 
BART model was implemented using the collected data of individual species. Last, the different results were 
validated and compared.

Extraction and cleaning of the data
Presence-only data of a species are one of the most widely used datasets in the context of SDMs due to their 
accessibility at different scales94–96. For our study, which aims to predict using a global perspective, we obtained 
data from the Global Biodiversity Information Facility (GBIF) using the rgbif package in R97,98. All the DOIs 
with the downloaded raw data for each species are available in the supplementary material section 1 Marine 
turtles information and study workflow.

The presence data for the seven species of marine turtles currently occurring in the marine environment 
were processed by eliminating repeated and terrestrial locations. We excluded terrestrial locations because we 
were only interested in predicting distribution in the oceans. However, it’s worth mentioning that female marine 
turtles spend part of their life cycle on land. We also employed the CoordinateCleaner package in R to 
remove presences with significant uncertainty99. BART requires both presence and absence data to operate 
correctly. Due to the lack of available absence data for statistical modeling using a Bernouilli distribution, we 
randomly generated pseudo-absences equal to the number of presences for each species100.

Furthermore, we incorporated global spatial time series of varying environmental conditions obtained from 
The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)54,55 and Fish-MIP initiative ​(​​​h​t​t​p​s​:​/​/​f​i​s​h​-​m​i​
p​.​g​i​t​h​u​b​.​i​o​/​​​​​)​. We drove our model using outputs from two different Earth System Models (ESMs) of the Coupled 
Model Intercomparison Project Phase 6 (CMIP6): GFDL-ESM4 and IPSL-CM6A-LR101. These models were 
built under prescribed scenarios for historic (1950–2014) and future (2015–2100) time periods101. Moreover, for 
both ESMs, we used two different Shared Socio-economic Pathway (SSP) climate scenarios: a more conservative 
one, SSP126, and a more pesimistic one, SSP585.

Among the various ESM variables available under ISIMIP, we selected SST (Sea Surface Temperature in degree 
Celsius), SSS (Sea Surface Salinity in PSU), LPHY (mole content of diatoms), O2 (mole concentration of dissolved 
molecular oxygen), DPHY (mole content of diazotrophs), and SPHY (mole content of picophytoplankton). 
It is worth noting that the last two variables were only available for GFDL-ESM4. Additionally, we included 
bathymetry as a static variable for all analysis. To prepare the variables for predictions, we standardized all 
the environmental variables. To standardize the variables, we applied the z-score transformation Xstd = X−µ

σ , 
where X  is the original variable, µ is the mean and σ is the standard deviation calculated from the historical 
data. This standardization was applied to both historical and future layers to ensure comparability. However, 
for obtaining the functional responses, we utilized the non-standardized environmental variables to get the 
response curve in the real scale.
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Modeling approach: BART
Regarding statistical modeling, BART models are based on a sum of regression trees. Reference39 provide an 
illustration of the formulation and representation of a single tree model, offering a comprehensive insight 
into the formulation underlying these models. Essentially, regression trees are algorithms meant for modeling 
and prediction in machine learning102,103. The formulation of a regression tree g could be defined in terms of 
two components: (1) T a set of decision rules and nodes, and (2) M = µ1, ..., µb a set of parameter values 
associated to each terminal node of T. Then, g(X; T, M) is the function that assigns a value to the b parameters 
(M = µ1, ..., µb) according to the covariates (X) added to the tree model.

The main problem with regression trees is that they tend to overfit, as they can split the space until they 
get one parameter per datum39. This overfitting may considerably bias predictions. To address this problem, 
approaches such as BART have been developed. Through the ensemble of decision trees and regularization using 
a priori distributions in the Bayesian context, BART methods reduce the overfitting without performing a cross 
validation for model parametrization37,38. In our study, we adopted the default prior distribution for BART, as 
the literature praises its strong performance with default parameters39.

In order to model the presences/pseudo-absences data, the statistical model applied in this work was as 
follows:

	

Yi ∼ Ber(πi), i = 1, ..., n,

ϕ−1(πi) =
m∑
j

gj(X; Tj , Mj),� (3)

where Yi represents the presence/pseudo-absence of species for observation i; πi is the parameter of interest 
linked to the predictor by a link function; ϕ−1 denotes the standard normal cdf (probit link function); gj  is 
the j−th (j = 1, . . . , m) tree of the form gj(X; Tj , Mj), where m is the total number of trees, X is a vector of 
multiple covariates, Tj  represents a binary tree structure consisting of a set of interior node decision rules and a 
set of terminal nodes, and Mj = {µj , ..., µjb} denotes a set of parameter values associated with each of the bj  
terminal nodes of Tj .

In the binary classification model implemented using Bayesian Additive Regression Trees (BART) via the 
dbarts package104,105, prior distributions are used to enforce regularization and prevent overfitting. Tree 
structures are governed by a depth-dependent prior of the form P (split at depthd) = α(1 + d)−β , with 
default values α = 0.95 and β = 2, encouraging shallow and simple trees. The values assigned to terminal nodes 
(i.e., individual tree predictions) follow a normal prior N (0, σ2

µ), where σµ = 3.0
k

√
m

, with k as a regularization 
parameter and m representing the total number of trees. In the classification setting, BART uses a probit model 
where the latent error term is fixed as ϵ ∼ N (0, 1), ensuring model identifiability and eliminating the need to 
estimate a residual variance.

Furthermore, a differentiation was established between two types of models: (1) native ranges, which refer 
to the areas where the species is known to have occurred historically and it is likely currently present; and (2) 
suitable habitats, which are understood as potential habitats where conditions are suitable for the target species. 
The reason for this differentiation is that certain areas may be considered potential habitats, but due to other 
factors such as geographic barriers or physical distances, the species has never been observed or is not present 
in those areas. Therefore, the main difference when modeling these two distributions is that for suitable habitats 
(2) the X vector of covariates only includes environmental variables, while for native ranges (1) the X vector of 
covariates also incorporates the coordinates of historical observations to account for realistic or plausible spatial 
variability in the model.

After inferring the model parameters, space and time predictions were carried out for the historical period 
(1950–2014) and for future projections (2015–2100) using two different ESMs (GFDL-ESM4 and IPSL-CM6A-
LR) and climate change scenarios (SSP126 and SSP585). Hence, we generated the historical (1950-2014) and 
future (2015–2100) projections by year using the suitable habitat model. Consequently, the predictions provide 
insights into the future areas where environmental conditions will be optimal for the seven marine turtle species. 
In contrast, we generated two different aggregated historical distributions in space: one using the native range 
model and the other using the suitable habitat model. For these aggregated historical spatial distributions, we 
employed the mean of the environmental variables (see Figure S1 in the supplementary material). Moreover, 
to interpret the influence of predictors on species distribution, we computed functional responses using partial 
dependence plots, which show the marginal effect of individual variables on the predicted probability of 
presence. Variable importance was assessed using a permutation-based approach, which measures the increase 
in prediction error when the values of a single predictor are randomly permuted.

Given the complexity of estimating species distributions in changing environments, we employed Bayesian 
Additive Regression Trees (BART) to address the challenges of modeling non-linear relationships between 
species and their environment. BART offers flexibility and is particularly suitable for handling large datasets 
with multivariate covariates, a common feature in climate change-related projections. Since our study focuses on 
suitable habitat models, BART is a particularly useful tool to account for uncertainty in these types of projections. 
Additionally, we recognize that there are multiple established approaches to addressing the challenges of SDMs/
ENMs, including several based on machine learning (ML). However, we believe that the use of ML in our 
study complements traditional approaches, as it allows for handling complex non-linear relationships between 
environmental variables and species distributions, as well as the ability to integrate large volumes of data in a 
flexible manner. In this sense, we are not proposing to replace traditional methods such as MaxEnt, Generalized 
Linear Models (GLMs), or Generalized Additive Models (GAMs), but rather to expand the predictive capabilities 

Scientific Reports |        (2025) 15:37534 13| https://doi.org/10.1038/s41598-025-20797-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of species distribution models by highlighting an additional tool. This approach may be particularly useful in 
scenarios involving large datasets and complex projections, such as those required to forecast under future 
climate change conditions.

Validation and comparison of predictions
For the validation of the models, we calculate several measures, distinguishing between two types of validations: 
an internal validation using a k-fold cross-validation method, and an external validation using new species 
distributions from GBIF that were not included in the models. Therefore, for internal validation, we applied 
the k-fold method to assess the performance of our model in the historical period. For external validation, we 
calculated these measures by comparing future projections of several years with actual observations that were 
not used in the fitting process.

For internal validation, we divide the data into k = 10 subsets to test the predictive capacity of BART. 
Therefore, we obtained a total of 10 different replicas. To analyze the results, we calculated error measures such 
as sensitivity, specificity, accuracy, and F1 score. All calculated measures are based on the estimations of true 
positives, true negatives, false positives, and false negatives106. Furthermore, as our forecasting extended from 
2015 to 2100, we were able to compare the model predictions from 2015 to 2023 with observed data from GBIF 
to evaluate the model’s performance in projecting the distribution. We compared the observed data with the 
predicted probability values and calculated error metrics. These metrics are essential when dealing with presence 
and absence data. To calculate all these metrics, we used a cutoff that was determined by maximizing Youden’s 
Index107. These metrics are defined as follows:

	
SPC = T N

N
; SEN = T P

P
; ACC = T P + T N

P + N
; F1 = 2 × T P

2 × T P + F P + F N
,

where T P  and T N  denote the number of true positives and true negatives, respectively; F P  and F N  represent 
false positives and false negatives; P  and N  refer to the total number of actual positives and negatives in the 
dataset. Specificity (SPC) measures the proportion of true negatives correctly identified, while sensitivity (SEN) 
quantifies the proportion of true positives correctly detected. Accuracy (ACC) indicates the overall proportion 
of correctly classified instances. The F1 score provides a harmonic mean between precision and recall, offering a 
balanced measure of model performance in the presence of class imbalance.

Finally, we compared the historical predictions (1950–2014) of each species with the last 10 years (2090–
2099), excluding 2100, to assess potential future habitat changes. We exclude the last year of the series due to the 
potential bias in the ESMs models for this final year of projection. To quantify these changes, we calculated the 
difference between the predicted historical distribution and the projections for the last ten years. This allowed 
us to estimate the extent of potential habitat change based on future climate change scenarios. Likewise, we 
extracted the mean probability for each projected year from 1950 to 2100, allowing us to assess changes over 
time in the mean probability of potential suitable habitat for each species and for the entire functional group.

Data availability
The datasets generated and/or analysed during the current study are available in the Global Biodiversity Infor-
mation Facility (GBIF) repository, https://www.gbif.org/es/. DOIs are available in the supplementary material.
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