Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38198

Support Vector Frontiers with kernel splines


thumbnail_pdf
Ver/Abrir:
 2024-1-s2.0-S0305048324000963-main.pdf

1,79 MB
Adobe PDF
Compartir:
Título :
Support Vector Frontiers with kernel splines
Autor :
Guerrero Martínez, Nadia María
Moragues Moncho, Raúl
Aparicio Baeza, Juan
Valero Carreras, Daniel
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/38198
Resumen :
Among recent methodological proposals for efficiency measurement, machine learning methods are playing an important role, particularly in the reduction of overfitting in classical statistical methods. In particular, Support Vector Frontiers (SVF) is a method which adapts Support Vector Regression (SVR) to the estimation of production technologies through stepwise frontiers. The SVF estimator is convexified in a second stage to deal with convex technologies. In this paper, we propose SVF-Splines, an extension of SVF for the estimation of efficiency in multi-input multi-output production processes which uses a transformation function generating linear splines to directly estimate convex production technologies. The proposed methodology reduces the computational complexity of the original SVF and does not require a two-step estimation process to obtain convex production technologies. A simulated experiment comparing SVF-Splines with standard DEA and (convexified) SVF indicates better performance of the proposed methodology, with improvements of up to 95 % in mean squared error when compared with DEA. The computational advantages of SVF-Splines are also observed, with runtime over 70 times faster than SVF in certain scenarios, with better scaling as the size of the problem increases. Finally, an empirical illustration is provided where SVF-Splines is calculated with respect to various typical technical efficiency measures of the literature.
Palabras clave/Materias:
data envelopment analysis
support vector regression
linear splines
convexity
Área de conocimiento :
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.omega.2024.103130
Publicado en:
Omega: The International Journal of Management Science
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.