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Among recent methodological proposals for efficiency measurement, machine learning methods are playing an
important role, particularly in the reduction of overfitting in classical statistical methods. In particular, Support
Vector Frontiers (SVF) is a method which adapts Support Vector Regression (SVR) to the estimation of pro-
duction technologies through stepwise frontiers. The SVF estimator is convexified in a second stage to deal with
convex technologies. In this paper, we propose SVF-Splines, an extension of SVF for the estimation of efficiency
in multi-input multi-output production processes which uses a transformation function generating linear splines
to directly estimate convex production technologies. The proposed methodology reduces the computational
complexity of the original SVF and does not require a two-step estimation process to obtain convex production
technologies. A simulated experiment comparing SVF-Splines with standard DEA and (convexified) SVF indicates
better performance of the proposed methodology, with improvements of up to 95 % in mean squared error when
compared with DEA. The computational advantages of SVF-Splines are also observed, with runtime over 70 times
faster than SVF in certain scenarios, with better scaling as the size of the problem increases. Finally, an empirical
illustration is provided where SVF-Splines is calculated with respect to various typical technical efficiency

measures of the literature.

1. Introduction

When faced with a group of companies or other entities which an
analyst wants to evaluate and compare from a benchmarking point of
view, an important line of research is the determination of the under-
lying production process that is behind the observed data. Many of the
existing approaches in the literature can be split into two families,
parametric and non-parametric methods. Among the most widely used
parametric approaches, we encounter Stochastic Frontier Analysis (SFA)
[1,26] while among the non-parametric perspectives, Data Envelopment
Analysis (DEA) [5,8] has received enough attention to develop into its
own research topic.

Among the advantages of non-parametric approaches, their flexi-
bility, the mild conditions required for their use, and the natural way in
which they deal with multi-input multi-output production processes
have been pointed out [11]. In particular, DEA is characterised by its
estimation of the production technology as the smallest set which sat-
isfies envelopment of the data from above, free disposability of inputs
and outputs, and convexity. The smallest set is achieved via the principle

of minimal extrapolation. Within this context, various types of as-
sumptions are possible, yielding different estimators. For example, a
related estimator is Free Disposal Hull (FDH) [12], which removes the
convexity postulate. This results in stepwise frontiers in FDH as opposed
to the piecewise linear frontiers estimated by DEA.

As one of the most well-known non-parametric models, many
properties of DEA have been considered. In particular, the postulate of
minimal extrapolation has led to criticisms being leveraged that it is a
conservative estimator, sometimes even labelling it as a pure descriptive
approach [14]. This results in a set which fits too closely to the observed
data and may not correctly estimate the underlying production process.
Various authors have attempted to overcome this issue and endow DEA
with inferential capabilities from the statistical point of view, such as
[11], who propose a characterization of the Data Generating Process
(DGP) that is behind the observations. They assume that the observa-
tions are a sample of identically and independently distributed random
variables with an unknown joint distribution. The task of the estimation
of the production technology can then be identified with estimating the
support of the underlying DGP. They used this setting to perform
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inference tasks such as proving consistency and performing boot-
strapping to estimate confidence intervals on DEA models.

Recently, another approach which has become more important
makes use of some of the similarities between nonparametric methods
and the machine learning literature. Among machine learning models,
Support Vector Machines (SVM) [38,39] are an interesting family of
machine learning algorithms, since the approach is based on solid sta-
tistical learning theory. Support Vector algorithms use the principle of
Structural Risk Minimization to aim to obtain models with good
generalization capabilities via bounds on estimates of the out-of-sample
generalization error (prediction error) of models. Some recent contri-
butions in this line of research ([36], 2022) proposed an adaptation of
Support Vector Regression (SVR), called Support Vector Frontiers (SVF)
to the estimation of stepwise production frontiers, i.e., comparable with
FDH, and a Convexified SVF (CSVF), which is comparable to DEA.

Other methodology works which use machine learning principles for
measuring efficiency can be seen in the Corrected Convex Nonpara-
metric Least Squares (CCNLS) proposal by [21], while [31] proposed a
smooth nonparametric kernel frontier estimator. [10] introduced an
estimator based on quadratic and cubic splines with shape constraints.
Decision trees have been adapted in various ways, such as [14,35]. The
Structural Risk Minimization was used to construct a technology esti-
mator by [16]. A representation of production frontiers using hinging
hyperplanes was introduced by [29]. Boosting methods have been
adapted by [17,18]. Additive models based on splines have been pro-
posed by [13]. In addition to the regression-based approaches, based on
supervised learning methods, a recent contribution has proposed an
unsupervised learning-based generalization of DEA [27,28], among
others.

One of the tools which allow SVMs to be very flexible is the use of
transformation functions with associated kernels. These map the orig-
inal space of predictors into a higher-dimensional space, where the
classification/regression task is performed via a hyperplane which,
when transformed back to the original space, can have different and
flexible shapes. Usual kernels can be linear, polynomial, splines,
gaussian, RBF kernels, among others. Within the SVM family, we
encounter the Support Vector Regression (SVR) algorithm, which ap-
plies the SVM approach to regression problems. The flexibility of SVM
using kernels allows SVR to estimate functions satisfying a variety of
properties. An important family of kernels is given by the splines
generating kernels, which allow the flexibility of splines interpolation to
be used in conjunction with Support Vector Machines [39].

In the context of efficiency measurement, SVF [36,37] resorts to SVR
that partitions the input space into a grid of cells, and associates to each
cell values of 0 or 1 according to the location of data points on the grid.
The use of constant values results in the use of step functions, which
yields a stepwise estimation of the production frontier, in line with FDH,
which is at a second stage convexified to obtain a production technology
along the lines of DEA. However, this choice of transformation function
causes the method to have a large computational expense. We remark
that the Boolean grid of values used by SVF can be seen as a kernel
generating splines of order 0, ([39], p. 464).

In this paper, we propose SVF-Splines, an extension of SVF which
uses a transformation function involving splines of order 1. This results
in piecewise linear estimators which can be directly compared with DEA
while, at the same time, reducing the computational complexity of SVF,
as we will show. We consider the restrictions which ensure that the
estimator satisfies the microeconomic postulates of convexity, free
disposability in inputs and outputs and data envelopment. We then
compare this estimator in a computational experiment with traditional
DEA and with CSVF, that is, the convexified version of SVF. We observe
better results with lower computation times, particularly as the number
of observations and dimensions increase. We also adapt a variety of
classical measures of efficiency to the SVF-Splines estimator and illus-
trate with an empirical example the efficiencies obtained by DEA and
the new approach.
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The rest of the paper is structured as follows. Section 2 describes
background concepts about Data Envelopment Analysis, Support Vector
Regression and (Convex) Support Vector Frontiers. Section 3 adapts the
linear splines kernel to SVF to introduce the SVF-Splines algorithm,
proves that it satisfies the microeconomic postulates, characterizes the
estimated technology as a DEA-type technology, and shows how to
calculate a variety of measures of efficiency with the SVF-Splines esti-
mator. Section 4 results from a computational experiment comparing
the proposed SVF-Splines algorithm to DEA and Convex Support Vector
Frontiers, as well as a discussion about their computational character-
istics. Section 5 then illustrates the results obtained by SVF-Splines in an
empirical example. Finally, Section 6 presents the conclusions obtained
and outlines further possible lines of research.

2. Background
2.1. Data Envelopment Analysis

Data Envelopment Analysis (DEA) is one of the most well-known
techniques for measuring the efficiency of a set of units which use a
variety of inputs to produce a variety of outputs. It is a nonparametric
technique which estimates technical efficiency as the “distance” (along
some permissible direction) to the efficient frontier of a production
technology. The DEA production technology consists of the unique
smallest set which envelops the observations, while satisfying convexity
and free disposability of inputs and output [5]. In a production process
with n DMUs (Decision Making Units) which use m inputs and produce s
outputs, we denote inputs as x € R and outputsas y € R’,.. LetX € R7”"
(Y € RY™) be the matrix containing all the inputs (outputs) of the DMUs
in the dataset, with each DMU as a column. The DEA estimate of the
technology under Variable Returns to Scale (VRS) is [5]:

Toma = {(x,y) € R™ : x> XA,y < YA,2>0,A1=1} @

DEA assumes convexity of its production technology, which is a
polyhedral set. When the convexity assumption is relaxed, we obtain the
Free Disposal Hull (FDH) estimator, which envelops the data and sat-
isfies free disposability of inputs and outputs and minimal extrapolation
but does not satisfy convexity. The production technology estimated by
FDH is stepwise, and the convexification of this technology is the tech-
nology estimated by DEA on the same data.

A region of the production technology of particular importance for
the measurement of the efficiency of DMUs is the efficient frontier.
There are various possible characterizations of this subset, such as the
weakly efficient frontier 6 (T) and strongly efficient frontier 6°(T):

M) ={(x,y) eT:X<x,y>y=>(X,y) € T} (2)

F(M) ={xy) eT:X<x.¥ 2y, (xy) # (X,¥)=>(X,¥) ¢ T} 3

Elements of the strongly efficient frontier do not admit any
improvement along any variable (input or output) without worsening
along some other component (input or output) while remaining feasible.
The weakly efficient frontier, however, consists of those elements that
are not strictly Pareto dominated by any other feasible bundle, i.e., it
also contains those elements which allow for improvement along one
dimension while keeping the remaining variables constant. These ele-
ments do not belong to the strongly efficient frontier. Hence, the
strongly efficient frontier is a subset of the weakly efficient frontier,
though they do not necessarily coincide. In the case of DEA, the efficient
frontiers are both piecewise linear sets. Various measures of efficiency
project to either of the two efficient frontiers.

In this paper, as technical efficiency measures, we consider the radial
measures, both input and output oriented, which were the first intro-
duced in [15,5]. We also consider the Directional Distance Function [7],
and the Weighted Additive Measure [9].

With respect to an arbitrary production technology T, the output-
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Fig. 1. Linear Support Vector Regression estimation.

oriented radial measure measures how much the outputs can be
increased by the same proportion while remaining feasible. It can be
calculated using the following model:

w(x,y) = max{y € R: (x,yy) € T} (@)

Similarly, the input-oriented radial measure describes how much
every input can be reduced by the same amount while the DMU does not
become infeasible, and is calculated by solving the following model:

O(x,y) =min{# € R: (6x,y) € T} 5)

The directional distance function (DDF) projects the given bundle of
inputs and outputs along a pre-specified direction, given by a nonzero
directional vector g = (g~,g"). It is a graph type measure, since it seeks
to improve both inputs and outputs simultaneously. It was introduced by

[7]:
Plxy) =max{fc R: (x—pg .y +pg") €T} (6)

In this paper, we choose the directional vector g = (x,y) given by the
values of the input-output bundle itself. This choice results in a units-
invariant measure. The DDF and both radial measures project DMUs
to the weakly efficient frontier, so there may be additional potential
improvements (slacks) along some directions.

The Weighted Additive (WA) measure which we consider ensures
that DMUs are projected to the strongly efficient frontier, as it detects
slacks along any input or output. It takes as its basis a slightly different
DEA model, introduced in [23]. Given input-output weights (p—,
p") € R, the Weighted Additive Model is calculated as follows:

WA(x,y) =max{p s +p’s" : (x—s",y+s") € T,(s",s") e RT*"}

7
In particular, we use weights corresponding to the Range Adjusted
Measure [9]. These weights are given by p~0) = m andp™ = TR

where R; is the range of inputj and R} is the range of values of outputr.
This choice results in a graph measure which is invariant to units of
measurement.

The radial measures both determine as efficient those DMUs with
efficiency 1. However, in the case of the output orientation, every DMU
attains values larger than unity, while in the input oriented measure the

efficiencies attain values between 0 and 1. Meanwhile, the DDF and WA
can be considered measures of inefficiency, as efficient DMUs attain
values of 0, and larger values indicate less efficient units. With the
choices of weights and directional vector above, they are bounded above
by 1.

2.2. Support Vector Regression and splines kernel

We now describe the Support Vector Regression (SVR) algorithm and
the splines kernel that we will use. SVR is a regression algorithm that
adapts the Structural Risk Minimization problem to estimate a regres-
sion on a variable while not overfitting too much to the data. Originally
introduced with the Euclidean or I; norm, it has been extended to deal
with other norms, such as the l; norm, which results in a linear objective
function, other [, or the L, norms (see e.g. [6,32], and [41]). The base
SVR model with respect to such a norm (with margin ¢) is given by:

wb& &

Min | w|+C (&7 +&)
i=1

yif(w'xi+b+€)§§’i7 i:1~,"'7n (8)
wxi+b—e) -y <&, i=1,.,n
£, >0, i=1,..,n

The objective function of this model consists of two parts, a regula-
rization term || w || and an empirical error term Y, (51-2 + &), which
are combined via a weight C. This C is a hyperparameter which, together
with the margin hyperparameter ¢, is obtained via a cross-validation

process. The SVR model estimates a decision function given by f(x) =
w*-x +b* with errors of & ¢ for the observed data outside of an
e-insensitive region. Thus, the observations within an ¢ margin of the

estimated function f(x) attain an error of 0, and the empirical errors are
measured to this ¢ margin of the decision function. A graphical illus-
tration of a function estimated by the model can be found in Fig. 1.
The SVR method can be adapted to estimate nonlinear functions via
the use of a transformation function ¢ which maps the space of predictor
variables into a higher-dimensional space in such a way that the ob-
tained estimation function is linear in the transformed space but not in
the original space. This is sometimes called the “kernel trick” in the
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Fig. 2. Support Vector Regression with linear splines.

literature. The kernel SVR model with transformation function ¢ is the
following:

Min — w]+CY_ (5" +¢)
wos i i-1
yli(w¢(xl)+b+8) Sgiz i:]-a'“vn (9)
wp(xi)) +b—¢€)—y; <&, i=1,..,n
£ & >0, i=1,..,n

When a transformation function ¢ is used, the function estimated by

the model isf(x) = w*-¢(x) + b*, and its shape depends on the charac-
teristics of the transformation function ¢used. There is a wide variety of
possible kernels to use in this context, such as linear, polynomial,
Gaussian, grid-like and splines kernels.

In this paper, we focus our attention on the splines transformation
function proposed by Vapnik in ([39], p. 464). This transformation uses
a finite number of knots to construct splines of order q by splitting each
input dimension into a finite number of knots. Splines are flexible
functions defined piecewise by polynomials of degree q, whose formu-
lation is given by:

2 q
s = (1 () ()" ()

2 q q q
L, () e () () 69 e (9 — ) )

103

In this transformation function, the jth component of x is trans-
formed into a (1 + ¢ + k;)-dimensional vector, where k; is the number of
knots along dimension j. The first component of such vector is a constant
value of 1, the next ¢ components are powers of the original component
of x, and the final k; elements are defined by:

O _ N\ i L0 o 40
(x(i)— f”)q = <Xi tlj) ¥ o by i=1,..k,j=1,..m
i N - B PR B IR Ky RN e I )

b ) 0 if xlgngtg)

1D

In particular, splines of order ¢ = 0 yield step functions as estimators,
while splines of order ¢ = 1, also called linear splines, produce piece-
wise linear estimators, see Fig. 2 for an example. Higher values of g
provide piecewise approximations using polynomials of degree q. In this
paper, we focus on splines of order ¢ = 1, inspired by the nature of DEA,
which estimates a piecewise linear production function.
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2.3. Support Vector Frontiers

A recent contribution [36] shows how to adapt Support Vector
Regression to the estimation of production functions in the single-output
case. The authors adapt the SVR model to satisfy the properties of pro-
duction functions of envelopment from above and monotonicity and
develop Support Vector Frontiers (SVF). They propose a transformation
function ¢Z,x(x) of the space of inputs which consists of binary values on
a grid with its components taking values of 0 or 1 whenever they are
dominated by x. As a consequence, SVF estimates step production
functions, in other words, comparable with the Free Disposal Hull esti-
mator. The authors also show how to convexify this technology in order
to estimate DEA-like production functions, via Convexified Support
Vector Frontiers (CSVF). Additionally, SVF has later been extended to
the multi-output context in [37]. The multi-output SVF model is given
by:

Min

WSy

+ Ciifi(”

r=1 i=1

’"m
;w
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particular, it can be characterised as an FDH-type estimator on a set of
“virtual points” defined by the grid involved in the transformation
function ¢$,(x). These points are virtual in the sense that they are not
necessarily in the original data. Instead, they are defined using the
predictions of the model on extreme points of the grid cells. In a second
stage, this production technology is convexified to obtain a DEA-style
technology with respect to these virtual points, yielding the Con-
vexified SVF (CSVF) estimator. This results in a two-stage estimation of
convex production technologies. In particular, to simplify computation,
each split input dimension is split in the same number of nodes, which
leads to a single hyperparameter d to be tuned together with Cand ¢ via a
five-fold cross-validation procedure.

The margin hyperparameter ¢ can be used to define a more robust
notion of technical efficiency, which the authors name e¢-insensitive
technical efficiency. This notion considers any DMU within a margin ¢ of
the technical efficient frontier to be e-insensitive technically efficient,

st. wgo(x)-y" =0, i=1,.,n r=>L..,s
w(’)-¢§VF(xi)—yf’)Sg+r§f’), i=1,.,n r=1,..,s (12)
W S A= bty Zheok s =1
Jooim 1 L=V 0k, j=1,..m r=1,...s
&V 20, i=1...n

We remark that this model, when s = 1, is equivalent to the single-
output model introduced in [36]. It involves a transformation function
S, (x) associated to a grid G common to all outputs, which partitions
the input space into a grid of binary values, as well as a different set of
weights wfor each output dimension. Each vector of weights has one
component for each cell of the grid G. In (12), ¢S, (x) can be considered
a splines transformation of order 0. It results in an estimation for each
output Jis(x;) := w-¢S,(x;), r = 1, ....’s, which is a stepwise pro-
duction frontier in line with Free Disposal Hull.

The SVF model has an empirical error fl@ associated with each yl@,
the output dimension rof DMU i, and model (12) minimizes the weighted
sum & of the regularization term >_, || w")|| and the empirical error
S5 S &0, weighted by a parameter C. The first constraint in (12)
ensures that the estimator envelops the observed data from above, while
the second constraint will penalize the error committed beyond a margin
parameter ¢ via the empirical error fgr) , which will be nonnegative by the
final restriction. Finally, the third restriction, which involves variables
W) definedby W, :=

1 dm 1.lm

r =1,...,s, will ensure that the estimated output ?g‘),F(x) is a monotonic
non-decreasing function. Once model (12) is solved, optimal values w0
are obtained, and the estimated output is given by ?g‘),F(x) =w.

$%(x) for each r = 1, ..., s. The associated production technology is
given by:
Tove = {(x,y) € R™ 1y < Yorp(x)} (13

By ([37], Section 3.1), this technology satisfies envelopment of the
data, free disposability, and it is an FDH-style production technology. In

and allows for the identification of those units which are not considered
e-insensitive technically efficient as units which are far from being
technically efficient.

As recognized by its authors, the SVF estimator has some limitations,
particularly of computational complexity. The proposed model involves
a large amount of variables and restrictions, given that there is one w
associated to each cell of the grid, which results in an exponential
(=~ md™) number of restrictions involving the W.

In this paper, we propose a way to overcome these limitations by
using a model based on linear splines in order to reduce the computa-
tional complexity and directly estimate convex production technologies
in a single stage.

3. Support Vector Frontiers with kernel splines
3.1. The single-output case

In this section, we show how to adapt a linear splines kernel (with
g = 1) to measure efficiency via the modification of the Support Vector
Frontiers estimation with this transformation function. This adaptation
reduces the exponential complexity of the restrictions of model (12) to a
set of a linear number of restrictions via the choice of nodes along each
of the input components. We begin by presenting the single-output
model and proving its properties, before generalizing it to the multi-
output case:
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Min Iwil+C3 &
s.t.
Wsr X)) —yi<e+& i=1,..n (14.1)
Yi = Wbgyp_sp(x:) <0 i=1,..,n (14.2)
w) >0 =0,k j=1,..m (143)
w) . w? >0 j=1,..m (14.4)
wd <o k=1,...,k j=1,..,m (14.5)
£>0 i=1,..n (14.6)
a4

where

¢gv1~>sp (xi) =

O i 0 s 0

0 _ 0 oo x>y

(xi _tb) - I RL AR
+ 0 if x"<t

. kpj=1,.,m (16)
7
Thus, ¢S, o(x;) is a transformation from R™"—>R™™ 215 (ie., a
py (k; + 2)-dimensional space). We denote this dimension by h. The
corresponding weights vector is:

w= (wﬂll),wél)7w(11),...,w,ill), ,wﬂ),wém),wgm),...,w£:)> 17
We remark that weights wgi), wg) correspond to the nodes tY ), t,g)

in (15). Hence, we denote the first two components along each input

dimension j, which do not correspond to any such nodes, by w(l)l and wg).
For ease of notation, we combine those weights which get used in each
interval between two consecutive nodes of the splines transformation:

) LI
ij’) = Zw,((’) =0,..,k, j=1,...m (18)
=0

This transformation function and associated kernel involves various
parameters, which must be estimated or chosen appropriately. Each
input dimension j is split into a number k; of nodes, and defines k; +2
components of both w and ¢. We choose to divide each input dimension
into a number d of nodes between the minimum and maximum values
observed along each dimension of the same width (max — min)/d. This
defines d + 1 nodes for each input, so that the dimension of the trans-
formation function, as well as that of w, ish =m(d + 3). This value d is a
hyperparameter of the algorithm which will be estimated via a five-fold
cross-validation process together with C and e. The input space is thus
divided into (d + 2)™ grid cells.

Solving problem (14) yields optimal values w* and & and the cor-
responding piecewise linear production function is given by )?(x) =

Fsvr_sp(x) = W*'¢gvpsp(x)- We will denote the corresponding Wl}(_j) at

optimum by Wg) as well. We now prove that f(x) satisfies data envel-

opment, monotonicity and concavity. Note that the properties of free
disposability and convexity for the multi-input multi-output framework
are translated into (non-decreasing) monotonicity and concavity of the
corresponding production function for the multi-input single-output
case, respectively.

Proposition 3.1. Foreachi=1,...,n, f(x) satisfies envelopment of the
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data. That is, for eachi=1,...,n, we have y; < f(xi).

Proof. Holds by constraint (14.2) and definition off(x), which forces
Yi — WS () =yi — f(x:) < 0 for each i. 1l

We now prove that f(x) is monotonic non-decreasing.
Proposition 3.2. Ifx € R™ and z > X, then f(z) > f(x).

Proof. Assume that z > x. We construct a series of inequalities where
at each step only one component changes. That is,

X=ay = (x(1),...,x(m)) < a; = (z(1), ...
= (2(1),...,3(m)) = z.

,x(m)) < ... < ap

We will prove the inequality between a;_, and a; for eachj =1,...,m.

Hence, we consider f(a)— f(aj1) = w9l op(a)— w-
) e (-6 ) (1s)
Dsvrsp (1) = W (D5yrsp(05) — #yp_sp(@1)). Since the only

component that changes between a;_; and g; is the jth component and w*
is fixed, the only components of ¢S, ¢, that change are those involving
the jth component. Furthermore, ¥ = a/’ — a/; > 0. The other terms
cancel out, and we have:

Flog) —flaga) =wli (1 -1) +w"p?
ki
()% ) i) () ()
Sl () () )

For each k, the terms involving t,(j) within the summatory can either
both be active, i.e., a}” > (1}’21 > t,(f) , both inactive, that is,
t,?) > a}” > aj@l, or only the aJ@ active, which happens when
a’ >t) >a?,. The term ((1]0) - t,(f))+ - <aj(’fl - tfj>>+ is then
(a}@ — t,i”)+ - (aj@l - t,ED)+ = j@ - aj@l =p% (both active), 0—0 =
0 < Y if both are inactive, or (a}” - t,@) 0= a}j) -t < a}f) - a]@ —
pY. Thus, in any case, these terms are bounded above by ). Then, each
such term is multiplied by w,(f)*, which is non-positive by restriction

=z =z ) ol K )+ ol
(14.5). Thus, we have f(a)— f(ai1) >wd 0+ S wlp0 =

e i
wg_ Y > 0.

We remark that this final inequality holds as W,((’)) > 0, by constraint
(14.3). Therefore, we have f(a;) > f(a;_1) for each j. By applying this

argument repeatedly, we obtain that f(z) - f(x), as claimed. Thus, j?(x)
is monotonic non-decreasing. [l

Next, to prove concavity of the estimated production function, we
consider the nature of the components of the transformations, and the
signs of the components of w*. Intuitively, as each of the individual w
(except the first ones) are negative, so the slope of the estimated frontier
only decreases as more terms activate, resulting in a concave production
function.

Proposition 3.3. The estimated production function )A‘(x) is concave.

Proof. We consider each component of ¢S sp(x). The first two terms
along each input dimension are linear, and their corresponding weights
in w*, that is, w*; and w{, are non-negative by constraint (14.4). Thus,

the corresponding summands in the expression for f(x) are linear, hence
both convex and concave. The remaining terms are defined as the
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maximum between two linear functions, the constant 0 and x¥) — tl(j).

Since both terms are linear, they are convex, i.e., the area above their
respective curves is convex. The area of the maximum between two
functions corresponds to the intersection of both regions, so each term in
$Sp_sp(x) involving a maximum is convex. These terms are then
multiplied by the corresponding weights Wl]@*, which are non-positive by
restriction (14.5), so the corresponding products are concave functions.

Thus, the expression for f(x) is a sum of concave functions, and is thus
concave. [l

Having established these properties of the estimated production
function, we now move on to the multi-output case, and consider the
corresponding production technology.

3.2. The multi-output case

We now present the multioutput SVF-Splines model, which extends
the above single-output model to the multi-output case following the
approach by [40]. The idea is that a multi-output model can be obtained
by using a transformation of the outputs and estimating weights for each
of the outputs separately, so that with the same grid in the input space
(which a common structure of knots for all the outputs), different esti-
mations are obtained for each of the multiple outputs. The model is as
follows:

S S n
Min 3w e e

r=1 i=1
S.t.
W hG op(X:) *}’Er) < €+5Er) i=1,.,n r=1,
-ylgr) 7W(r)‘¢gvz~>sp(xi) <0 i=1,.,n r=1,
i)
ij) >0 [=0,....k j=1,...m r=1,
wg“”,w@lm >0 j=1,...m r=1,
wd” <0 k=1,..k j=1,..m r=1,
& >0 i=1,.,n r=1,

Here, ¢S, sp(x) is defined as in the single-output model by (15),

whereas there is a w(”) associated with each output. Correspondingly,
the Ware defined by:

A LI
Wgw = ng)m, [=0,..k, j=1,.m r=1,.s. (20)
=0

In this setting, once model (19) is solved yielding optimal values w*
and &, we define the rth component of the output vector corresponding
to input profilex by:

~(r) ~(r

(%) = 7" syr_sp(x) (21)

=W op().

This defines the multi-output production frontier ?(x). The corre-
sponding production possibility set or technology is defined as the set of
those collections of inputs and outputs whose outputs lie below the
production frontier:

Tovr-sp = {(x,y) € R™ 1y < f(x)} (22)

We now prove that TSVF,SP satisfies data envelopment, free dispos-
ability in inputs and outputs and convexity. With these definitions, we
can extend the results above to the multi-output estimator. The proofs
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are very similar to the ones in [37] Lemma 1, Propositions 1, 2, 3, 4. As
in the single-output model, the hyperparameters C, ¢ and d are estimated
by five-fold cross-validation.

Proposition 3.4. Foralli=1,...,n, we have (x;,y;) € Tsvr_sp.

Proof. Follows by constraint (19.2) and the definition of the technol-
ogy.- H

Proposition 3.5. f‘svp,sp satisfies free disposability in inputs and outputs.

Proof. Let (x,y,) € Tsyr_sp and (z,y,) satisfy z > xand y, <'y,. Then,
by Proposition 3.2 we have jAf(r) (z) > f(r) (x) for each component of ?(x).
Since y, <y,, we have that y, <y, < f(x) < f(z), so that (z,y,) €

Tgvp,sp and f"gvp,sp satisfies free disposability. Il
Proposition 3.6. Tsvp,sp is convex.

Proof. By Proposition 3.3, each component of f(x) is concave. Thus, so
is ?(x). Now, ([24], p. 81) shows that a function ?(x) is concave if and
only if its hypograph is a convex set, where the hypograph is HG; = {(x,
y) ER™ 1y < ?(x)}. In this context, the production technology
Tsvr-sp = {(x,y) e R™ .y < f(x)} = HG; N R is the intersection of
the hypograph and the non-negative quadrant of R™"*, and both these

s (19.1)
s (19.2) 1)
s (19.3)
s (19.4)
s (19.5)
s (19.6)

sets are convex. Therefore, since the intersection of convex sets is a
convex set, the production technology Tsyr_sp is a convex set.

Proposition 3.7.
single-output model.

If s = 1, then the multi-output model coincides with the

Proof. Clear from the formulation of the models. |l
Corollary. ’TDEA C ?svp,sp.

Proof. The set f"DEA is, by the principle of minimal extrapolation, the
intersection of all sets satisfying envelopment, free disposability and

convexity. By Propositions 3.4, 3.5 and 3.6, Tsvp,sp satisfies envelop-

ment, free disposability and convexity. Thus, T"DEA is a subset of ?svpsp.

3.3. Characterization of the estimated technology as a DEA-type
technology

We now proceed to characterise the estimated technology as a DEA-
type technology with respect to a set of “virtual points”, which are not
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observed in the data but rather constructed from the SVF-Splines esti-
mations and the extreme points of the grid cells involved in the splines
transformation function. In other words, we prove that the estimated
technology consists of the smallest convex set enveloping these virtual
points which satisfies free disposability, i.e., a DEA-type technology with
these virtual points as observations.

A grid consists of cells Cy,;,_;,, wherel; = 0, ..., k; for each inputj =1,

...,m, with corresponding lower extreme knot-point a;, ;, = (t(

tfrT)). Each grid cell has 2™ extreme points and is the convex closure of its
extreme points. The output values estimated by SVF-Splines at each
extreme point of a grid cell is given byjA'(al1 bodn) =Ysvrsp(@n,.1, ), and
the set of all pairs (ay,y,. 1, ,f(all b..l,)) forms the virtual data of Tsvr_sp-
In other words, if we let A be the matrix containing the inputs ay,;, ;, as

columns and f(A) be the matrix of corresponding estimated outputs, we
have:

T spoma = {(X,y) € R™ :x > ALy <f(AA,A>0,41=1}  (23)

By the properties of DEA, this set is the smallest set satisfying

envelopment of the “virtual points” (ayy,. ,,f(ay.1,)) determined by
SVE-Splines, free disposability in inputs and outputs, and convexity. We
now prove the following equality:

Proposition 4. TSVF*SP*DEA = TSVF*SP- In other words, TSVF*SP is a DEA-
type production technology with respect to the virtual points (all b Lys
f(allzz...lm)) foreachly =0,...ki;..;lm =0,....kn.

Proof. Recall the definition of the technology estimated by SVF-
Splines (22):

istztsp = {(X7Y) € RTH Yy Si(x)}

WA(x,y) =

We now prove that these two characterizations (22) and (23) of the
production technology coincide. By Propositions 3.5 and 3.6, we have
that ?svpsp is a production possibility set satisfying free disposability of
inputs and outputs and convexity. Regarding envelopment of the virtual
points, we have proved envelopment of the original data in Proposition
3.4, but now the data defining the technology are not the original data
but instead the virtual data given by f(x) These points are also con-
tained in Tsw-:sp by the definition of the technology, thus ?SVF,SP also
envelops the virtual data (ayy, ., ,f(al1 1.1, )) for each extreme of the grid.
Therefore, by the principle of minimal extrapolation, we have
Tsvr_sp-pea C Tsv-sp-

For the reverse inclusion, we consider an arbitrary (x,y) € Tsyr_sp,

and we will prove that (x,y) € Tsvr_sp_pra. The input profile x belongs
to a cell of the grid, which we denote by C, and is defined by a set of
extreme points a1, ...,azn. In particular, C is the convex closure of these
points. As x € C, it can be written as a convex linear combination of its

corner points, that is, there exists A > 0 with 2321/1\, =1 such that x =
Eleavlv We now show that y < f(A)/l. Now, f(x) is a piecewise linear
function, which is linear within the confines of each cell of the grid.

Thus, since x € C, we have f(x) = f(Zfilavﬂv) = EEZIA(aV)AV =

f(A)/l. As, by assumption, (x,y) € Tsvp_sp, we have thaty < Y¥gyp_gp(x)

max{p s  +p's" €eR: (x—s,y+s") € Tevrsp, (s7,8%) € RTY
max{p s +p'st i x—s >ALy+s" <FA)ALA>0,41=1,
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= f(x) = f(A)A. Thus, Tsyr_sp C Tsvr_sp_pea, and equality follows. [l
3.4. Measures of efficiency using SVF-Splines

We will use this characterization of the estimated technology ?svp,sp
as a DEA-like technology with respect to a set of virtual points to adapt
some of the measures of efficiency available in the literature to this
context. We adapt the radial measures, both input and output oriented,
as well as the models defining the Directional Distance Function and the

Weighted Additive Measure. With respect to the virtual points (ay,y,. ,

f(ay,.1,)) defined above, the output-oriented radial measure can be
calculated using the following model [5]:

w(x,y) = max{y € R: (x,yy) € Tsyr_sp} = max{y : x > Ad,yy
<f(A)A4>021=1} (24)
Similarly, the input-oriented radial measure is calculated by solving
model [5]:
O(x,y) =min{0 € R: (6x,y) € Tsyr_sp} = min{6 : Ox > ALy < f(A)A, A
>0,A1=1}
(25)
The directional distance function (DDF), with directional vector g =

(g,8") [7] is the solution to the following model:

max{f € R: (x —ﬂgiy+ﬁ§*) € Tsvr_sp}
max{f:x—pg > ALy+pg" < f(A)A,A>0,A1 =1}

plxy) =

(26)

The weighted additive (WA) model [23] is calculated in the case of
resorting to the new approach as:

27)
s,s" >0}

These linear models allow for the estimation of the efficiency of an
input-output bundle with respect to the SVF-Splines estimated produc-
tion technology. They can further be extended to calculate ¢-insensitive
technical efficiency, as in [37], by substituting the terms f(A) by f(A) -
¢ in the second restriction of each of the models above. For example, the
e-insensitive radial output efficiency would be calculated using:

w(x,y) = max{y : x > Ad,yy < (F(A) —€)4,A > 0,A1 =1} (28)

The rest of the models are analogous.
These models, however, involve many virtual points ((d + 2)™). In
practice, we often substitute @, , by the original data to obtain a

simpler model, based only on the set of points (x;, f(xi)), i = 1, ...,n,
which is computationally less expensive. The radial output-oriented
model would then be calculated using the following model, with the
remaining measures being analogous:

y(x,y) = max{y : x > XA, yy < f(X)A4,A > 0,A1=1} (29)
4. Computational experience
In this section, we assess the quality of the SVF-Splines method by

comparing it with other techniques. In particular, we perform a simu-
lated experiment where we compare the performance of SVF-Splines
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with first DEA and then CSVF using different production technologies
with multiple inputs and a single output, within a simulated experience
extracted from [27].

The details of the simulated production functions appear in Table 1.
The simulated production functions are Cobb-Douglas functions, which
are widely known in the economic literature. Each scenario uses a
different number of inputs, and the exponent associated with each input
indicates the level of theoretical marginal contribution of each variable
to the output. The exponents of the inputs add up to 0.5 in every case,
which is related to non-increasing returns to scale. The input values
were obtained independently and identically distributed from Uni[1,10].
The observed output value is then calculated by multiplying by an extra
inefficiency term e %, with u ~ exp(1/3).

Each scenario was simulated with sample sizes n = 30,50,70,100.
Each combination of scenario and sample size was then replicated 50
times. The performance of each algorithm was measured using the
standard Mean Squared Error (MSE) between the real, unobserved
production frontier and the estimated production frontier over the 50
trials, which is calculated as 3°2°; S°% ; (£(x}) 7j?(x§))2 /50n, as well as
o If () —
f(xlF)\ /50n, where the superscript t corresponds to the trial considered.

The experiments were performed in the Scientific Computation
Cluster at the Miguel Hernandez University of Elche, which has a Su-
permicro SYS-1029GQ-TRT node, with two Intel(R) Xeon(R) Gold
6242R CPU @ 3.10 GHz processors, 80 cores and 768 GB of RAM. The

algorithm was programmed in Python and CPLEX v20.1.0 was used for
solving the optimization problems.

the corresponding Bias, with formulation

4.1. Comparison between DEA and SVF-Splines

We first compare the SVF-Splines methodology with standard DEA
via the MSE and Bias scores obtained in the simulated scenarios. Table 2
reports the comparison between these two methods with respect to both
MSE and Bias for each combination of scenario and sample size. The first
two columns indicate the scenario (which corresponds to the number of
inputs) and the sample size. The next three columns refer to the MSE
associated with the DEA and SVF-Splines estimators, and the relative
difference between the two methods. The final three columns indicate
the Bias of the techniques and their relative difference.

Regarding the hyperparameters C, ¢ and d involved in SVF-Splines,
we tune them using a five-fold cross validation procedure, which eval-
uates which combination of values yields a better estimator, as
measured by the out-of-sample MSE at each fold. The sets of possible
values which we consider for the hyperparameters are C € {0.001,0.01,
0.05,0.1,0.5,1,2,5,10,100}, ¢ € {0,0.001,0.005,0.01,0.05,0.1,0.5,1},
whereas the number of partitions d along each input dimension depends
on the number n of DMUs via d = 0.1-h-n, rounded to the nearest
integer, with h = 1,...,10.

We observe that SVF-Splines outperforms DEA in every scenario,
with improvements in MSE of up to 95 % and up to 77 % in the case of
Bias. The relative improvements increase as the sample size increases

Table 1
Data generating processes used.
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(except in the scenario with a single input). As the dimensionality of the
problem increases, the MSE and Bias of SVF-Splines grows slower than
those of DEA. These results indicate that SVF-Splines is capable of esti-
mating production functions closer to the unobserved theoretical pro-
duction function than DEA, so that we can conclude that SVF-Splines
seems not overfit to the data as much as DEA. In the case of DEA, this
overfitting could be attributed to the principle of minimal extrapolation
(see, for example, [14]).

Finally, we point out that the new approach (SVF-splines) has
demonstrated superior performance over the standard DEA approach in
terms of MSE and bias within a finite-sample analysis (with n < 200).
However, claiming complete superiority would be premature. It is
important to consider various properties, such as consistency, from a
statistical perspective. While consistency has been extensively studied
for the DEA estimator (see, for example, [20]), a similar analysis is
lacking for SVF-splines. Consequently, our comparison with the stan-
dard DEA model is confined to finite-sample analysis and our findings
may be particularly relevant in scenarios with limited data sample sizes.
Notably, a detailed analysis involving a greater number of DMUs and
variables exceeds the scope of this paper but presents a potential avenue
for future research.

4.2. Comparison between SVF-Splines and CSVF

In addition to standard DEA, we compare SVF-Splines with Con-
vexified Support Vector Frontiers (CSVF). Table 3 shows those com-
parisons which could be performed, which were not as extensive as in
the previous comparison due to the high computational cost with CSVF,
as described in Table 4. The structure of Table 3 is analogous to that of
Table 2. The same set of potential hyperparameter values described in
the previous section was used in the Cross-Validation process of both
CSVF and SVF-Splines.

We can observe in Table 3 that, while in the single-input case, CSVF
performs slightly better than SVF-Splines, as soon as there are at least
two inputs, SVF-Splines commits a smaller MSE and Bias than CSVF. This
could be due to the fact that SVF-Splines directly estimates a convex
production function while CSVF first estimates a stepwise function
which is later convexified.

We now discuss the computational workload associated with CSVF
and SVF-Splines. Table 4 reports the average time spent by both SVF-
Splines and CSVF in the overall Cross-Validation process (CV), as well
as the time used to create the Best Model (BM) and the time spent to
Solve the Best Model (SBM) on average in each configuration. We can
observe how CSVF is a very computationally expensive method. In
particular, CSVF requires a long time to execute as soon as there are at
least 2 inputs, and it scales much slower as the number of inputs and/or
DMUs increases.

In particular, we can see how, already with only two inputs and 70
DMUs, the computational time needed by CSVF is around 6.5 times that
required by the new approach, and this ratio only increases as the
number of DMUs and inputs increase. With the largest setting solved by
CSVF, SVF-Splines can solve the problem over 70 times faster than CSVF.

Scenario/ Data Generating Process (f(x)-e ")

Num. Inputs

1 x05.e7u
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Table 2
Comparison between DEA and SVF-Splines according to MSE and Bias.
Scenario Sample Size Mean Squared Error Bias
DEA SVE-SP Improvement DEA SVEF-SP Improvement
1 30 0.02 0.016 17 % 0.104 0.097 7 %
50 0.011 0.01 13 % 0.076 0.072 5%
70 0.007 0.006 11 % 0.059 0.057 4%
100 0.009 0.008 12 % 0.069 0.067 4%
200 0.000 0.000 3% 0.01 0.009 2%
2 30 0.074 0.035 52 % 0.198 0.135 32%
50 0.048 0.019 60 % 0.16 0.102 37 %
70 0.031 0.012 60 % 0.127 0.08 38 %
100 0.024 0.01 61 % 0.109 0.069 38 %
200 0.001 0.001 34 % 0.026 0.018 29 %
3 30 0.132 0.05 62 % 0.285 0.174 40 %
50 0.098 0.034 65 % 0.242 0.139 43 %
70 0.07 0.022 70 % 0.203 0.105 49 %
100 0.056 0.013 76 % 0.177 0.083 54 %
200 0.003 0.001 63 % 0.045 0.023 49 %
4 30 0.2 0.064 67 % 0.342 0.191 44 %
50 0.156 0.042 74 % 0.3 0.149 51 %
70 0.114 0.025 78 % 0.252 0.119 53 %
100 0.095 0.018 81 % 0.231 0.096 59 %
200 0.006 0.001 79 % 0.060 0.024 60 %
5 30 0.312 0.121 61 % 0.468 0.292 38 %
50 0.239 0.063 74 % 0.397 0.209 48 %
70 0.225 0.058 74 % 0.387 0.2 49 %
100 0.176 0.037 78 % 0.343 0.163 52 %
200 0.009 0.000 82 % 0.059 0.022 62 %
6 30 0.313 0.098 68 % 0.465 0.256 45 %
50 0.272 0.073 73 % 0.424 0.211 51 %
70 0.227 0.05 78 % 0.385 0.17 56 %
100 0.2 0.037 82 % 0.359 0.143 60 %
200 0.012 0.001 90 % 0.084 0.026 69 %
9 30 0.392 0.129 68 % 0.52 0.286 45 %
50 0.368 0.095 74 % 0.501 0.24 52 %
70 0.337 0.067 80 % 0.475 0.203 57 %
100 0.318 0.052 84 % 0.46 0.173 62 %
200 0.023 0.001 94 % 0.114 0.028 76 %
12 30 0.413 0.135 68 % 0.534 0.296 45 %
50 0.416 0.107 74 % 0.539 0.257 52 %
70 0.396 0.084 79 % 0.526 0.229 57 %
100 0.378 0.064 83 % 0.515 0.2 61 %
200 0.030 0.002 94 % 0.135 0.031 77 %
15 30 0.439 0.165 63 % 0.566 0.34 40 %
50 0.421 0.131 69 % 0.543 0.295 46 %
70 0.427 0.093 78 % 0.55 0.245 56 %
100 0.408 0.078 81 % 0.537 0.221 59 %
200 0.034 0.002 95 % 0.147 0.033 77 %
Table 3
Comparison between SVF-Splines and CSVF according to MSE and Bias.
Scenario Sample Size Mean Squared Error Bias
SVF-SP CSVF Improvement SVF-SP CSVF Improvement
1 30 0.016 0.016 0 % 0.097 0.09 —8 %
50 0.01 0.008 —25% 0.072 0.066 -9 %
70 0.006 0.005 —20 % 0.057 0.053 -8 %
100 0.008 0.008 0 % 0.067 0.064 —5%
2 30 0.035 0.05 30 % 0.135 0.164 18 %
50 0.019 0.03 37 % 0.102 0.125 18 %
70 0.012 0.021 43 % 0.08 0.105 24 %
100 0.01 0.017 41 % 0.069 0.087 21 %
3 30 0.005 0.009 44 % 0.089 0.077 13 %
50 0.034 0.058 41 % 0.139 0.192 28 %

Furthermore, the estimated MSE and Bias obtained are lower for the
SVF-Splines than for the CSVF algorithm.

Computational times used by SVF-Splines with more inputs and
DMUs are reported in Fig. 3. It can be seen that, even in the most
expensive case of 100 DMUs with 15 inputs, the computational load is
lower than that of CSVF with 3 inputs and 30 DMUs.

The computational burden can be observed to be more in that the

10

creation of models, and in particular the Best Model (BM), which is
much more computationally expensive for CSVF than for SVF-Splines.
The Solution of the Best Model (SBM), despite the size of the models
and how expensive they are to construct, is very fast in both cases. We
can attribute this improvement of the new approach to the grid associ-
ated to the transformation function, which for CSVF requires a number
of parameters which is exponential in the number of inputs m (~ md™),
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Table 4
Execution time of the SVF and SVF-Splines algorithms.
Scenario Sample Size SVE-SP CSVF
CvV BM SBM CvV BM SBM
1 30 161.02 0.02 0.0 137.68 0.04 0.0
50 196.22 0.0 0.02 157.02 0.06 0.0
70 242.26 0.12 0.04 195.46 0.2 0.0
100 325.68 0.06 0.02 262.3 0.24 0.0
2 30 188.68 0.08 0.0 324.18 0.4 0.0
50 251.7 0.06 0.02 925.4 2.12 0.0
70 335.52 0.1 0.06 2166.32 5.82 0.04
100 489.0 0.14 0.02 5401.16 13.74 0.06
3 30 208.66 0.04 0.0 4697.6 7.64 0.06
50 299.28 0.06 0.0 21,764.54 46.02 0.18
3000
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ottt ol | I I
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Fig. 3. SVF-Splines runtime according to sample size and number of inputs.

as well as corresponding restrictions. On the other hand, the trans-
formation function related to SVF-Splines has a linear number of pa-
rameters in the inputs (=~ m(d + 3)).

From this computational experiment, we can conclude that SVF-
Splines is a method which reduces the overfitting present in DEA,
obtaining estimations closer to the unobserved efficient frontier. It
furthermore improves upon the results obtained by CSVF, with much
lower computational time required and lower MSE and Bias as soon as
the number of inputs is at least 2.

5. Empirical illustration
In this section, we present an illustration of the results that can be

obtained by SVF-Splines in an empirical database from the literature.

Table 5
Descriptive statistics of the Spanish tax offices dataset.

This database consists of 44 regional tax offices in Spain, which oversee
tax collection in almost all Spanish provinces. The data is from 2011,
and the database was used in [3]. We calculate the efficiency scores
using the efficiency measures introduced above (Section 3.4), that is, the
output and input-oriented radial models (24), (25), the directional dis-
tance function (26) with directional vector g = (x,y), and the Weighted

Additive (27) with the weights corresponding to the Range Adjusted

1
(m+s)R]T

of input j and R;" is the range of values of output r.

The dataset used contains three variables considered as inputs, and
two outputs. There are two inputs related to labour: the number of tax
inspectors and specialists (x;) and the number of workers in the rest of
the workforce (x;). We also consider as an input the number of suc-
cessful complaints by taxpayers against the tax authority (x3). This
variable indicates an output that a manager should desire to minimize,
sometimes called a bad output in the literature. Thus, it is considered as
an input in the model, as in [19,25]. The two outputs considered
correspond to the two main taxes collected by the tax offices: the in-

Measure, that is, p~0) =

and pt0) = t

1 _.
IR where R;” is the range

X x2 x3 vl y2 heritance and gift tax (y;) and the real estate transfer tax settlements
Average 32 91 57.6 10.45 8.91 processed (}/2)
lsvi(eidlt")m i(‘:’ ;g ;;g ;'ig 2'23 The data was normalized so that the values of the variables lie be-

. Dev. . . . o o qs . .

Max. 191 368 420.2 49.27 60.02 twet?n 0 and 1 by c.11v1d1ng the values of each variable by the maximum
90 % 60 194 176.7 20.65 18.97 attained value. This does not change the values of the measures of ef-
75 % 39 109 63.7 10.71 10.18 ficiency, which are all units-invariant. Table 5 shows descriptive sta-
25 % 17 43 8.9 5.30 3.62 tistics of the dataset before normalization.
10 % 11 32 5.0 3.88 2.14 - . . .
Min. - 2 08 251 Las The sets of potential hyperparameter values considered in the five-

11
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Table 6
Estimated efficiencies in the Spanish tax offices dataset.
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DMU Radial Output Radial Input Weighted Additive (RAM) Directional Distance Function
DEA SVF- e-insensitive DEA SVF- e-insensitive DEA SVEF- e-insensitive DEA SVF- e-insensitive
SP efficient SP efficient SP efficient SP efficient
ALMERIA 1.4075 1.5825 No 0.6966 0.5892 No 0.1046 0.1118 No 0.4075 0.4512 No
CADIZ 1.1414 1.2755 No 0.8866 0.7504 No 0.0649 0.0824 No 0.1297 0.2305 No
CORDOBA 1.5738 1.9151 No 0.4969 0.4468 No 0.0692 0.0745 No 0.3691 0.5684 No
GRANADA 1.2926 1.4025 No 0.7888 0.6659 No 0.0619 0.0716 No 0.2899 0.3494 No
HUELVA 1.4185 1.5963 No 0.7937 0.5286 No 0.0355 0.0416 No 0.4185 0.5416 No
JAEN 1.3502 1.6406 No 0.7441 0.5945 No 0.0480 0.0540 No 0.3217 0.4803 No
MALAGA 1.0000 1.0935 Yes 1.0000 0.9022 Yes 0.0000 0.0625 Yes 0.0000 0.0892 Yes
SEVILLA 1.1930 1.2155 No 0.8076 0.8012 No 0.0523 0.0808 No 0.1402 0.1947 No
HUESCA 1.0000 1.6517 Yes 1.0000 0.9511 Yes 0.0000 0.0202 Yes 0.0000 0.4394 Yes
TERUEL 1.0000 1.2668 Yes 1.0000 1.0000 Yes 0.0000 0.0141 Yes 0.0000 0.0000 Yes
ZARAGOZA 1.0000 1.0666 Yes 1.0000 0.9341 Yes 0.0000 0.0233 Yes 0.0000 0.0401 Yes
OVIEDO 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.0247 Yes 0.0000 0.0000 Yes
BALEARES 1.2670 1.8781 No 0.8114 0.5058 No 0.0581 0.0625 No 0.2285 0.3861 No
CANTABRIA 1.2319 1.3858 Yes 0.8058 0.6540 Yes 0.0243 0.0293 Yes 0.2049 0.3531 Yes
ALBACETE 1.2181 1.3919 Yes 0.8598 0.6805 Yes 0.0135 0.0218 Yes 0.1867 0.3651 Yes
CIUDAD REAL 1.0000 1.0000 Yes 1.0000 0.9996 Yes 0.0000 0.0032 Yes 0.0000 0.0000 Yes
CUENCA 1.2651 1.9234 No 0.8621 0.6563 No 0.0178 0.0307 No 0.2398 0.6550 No
GUADALAJARA 1.0364 1.7132 Yes 0.9778 0.6335 Yes 0.0083 0.0233 Yes 0.0345 0.5594 Yes
TOLEDO 1.1788 1.2682 Yes 0.7632 0.7387 Yes 0.0211 0.0260 Yes 0.1512 0.2588 Yes
AVILA 1.0000 1.2552 Yes 1.0000 1.0000 Yes 0.0000 0.0152 Yes 0.0000 0.0000 Yes
BURGOS 1.1882 1.2954 Yes 0.8444 0.7433 Yes 0.0172 0.0225 Yes 0.1672 0.2772 Yes
LEON 1.0000 1.0067 Yes 1.0000 0.9897 Yes 0.0000 0.0151 Yes 0.0000 0.0058 Yes
PALENCIA 1.1641 1.3862 Yes 0.8632 0.8000 Yes 0.0084 0.0205 Yes 0.1544 0.3670 Yes
SALAMANCA 1.0139 1.0910 Yes 0.9875 0.9035 Yes 0.0014 0.0142 Yes 0.0135 0.0841 Yes
SEGOVIA 1.2139 1.4089 Yes 0.8711 0.7071 Yes 0.0093 0.0228 Yes 0.1682 0.3802 Yes
SORIA 1.0000 1.8165 Yes 1.0000 1.0000 Yes 0.0000 0.0203 Yes 0.0000 0.0000 Yes
VALLADOLID 1.3574 1.5670 No 0.7649 0.6038 No 0.0305 0.0360 No 0.3362 0.4688 No
ZAMORA 1.0000 1.0805 Yes 1.0000 0.9086 Yes 0.0000 0.0162 Yes 0.0000 0.0746 Yes
BARCELONA 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.1021 Yes 0.0000 0.0000 Yes
GIRONA 1.0000 1.1410 Yes 1.0000 0.8714 Yes 0.0000 0.0286 Yes 0.0000 0.0802 Yes
LLEIDA 1.1634 1.2723 Yes 0.8622 0.7531 Yes 0.0160 0.0240 Yes 0.1457 0.2472 Yes
TARRAGONA 1.0000 1.1972 Yes 1.0000 0.7872 Yes 0.0000 0.0238 Yes 0.0000 0.1921 Yes
BADAJOZ 1.6460 1.7975 No 0.6317 0.4785 No 0.0699 0.0750 No 0.5002 0.7027 No
CACERES 1.4216 1.6921 No 0.7855 0.5000 No 0.0245 0.0321 No 0.3863 0.5989 No
A CORUNA 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.0046 Yes 0.0000 0.0000 Yes
LUGO 1.0000 1.0236 Yes 1.0000 0.9710 Yes 0.0000 0.0147 Yes 0.0000 0.0206 Yes
OURENSE 2.0479 2.1611 No 0.5134 0.4196 No 0.0469 0.0514 No 0.6079 0.6995 No
PONTEVEDRA 1.2544 1.3647 No 0.7844 0.7178 No 0.0545 0.0672 No 0.2519 0.2821 No
LA RIOJA 1.0000 1.3953 Yes 1.0000 0.7593 Yes 0.0000 0.0269 Yes 0.0000 0.3182 Yes
MADRID 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.0105 Yes 0.0000 0.0000 Yes
MURCIA 1.2786 1.3135 No 0.7771 0.7422 No 0.1426 0.1808 No 0.2496 0.2610 No
ALICANTE 1.0000 1.2054 No 1.0000 0.8316 No 0.0000 0.1235 No 0.0000 0.1379 No
CASTELLON 1.6437 1.8878 No 0.6331 0.5140 No 0.0584 0.0637 No 0.5191 0.6429 No
VALENCIA 1.0000 1.0000 Yes 1.0000 0.9993 Yes 0.0000 0.0285 Yes 0.0000 0.0000 Yes
Average 1.1811 1.3779 0.8776 0.7735 0.0241 0.0432 0.1505 0.2683
Std. dev. 0.2304 0.3143 0.1398 0.1829 0.0326 0.0362 0.1735 0.2279
# eff. Units 19 6 27 19 7 27 19 0 27 19 9 27

fold cross-validation process were: C € {0.001,0.01,0.05,0.1,0.5,1,2,
5,10}, ¢ € {0,0.001,0.005,0.01,0.05,0.1,0.2}. We remark that, since the
values of each variable were normalized to lie between 0 and 1, a margin
of 0.1 corresponds 10 % of the maximum value of each output variable,
i.e., already quite a large margin.' The value of d was chosen within d =
0.1-h-nforh =1,...,20, rounded to the closest integer. In other words, d
= {4,9,13,18,...,70,75,79, 84, 88}. The best hyperparameter combi-
nation was chosen as C = 1.0, ¢ = 0.05 and d = 4. This indicates an
e-insensitive margin of 5 % of the maximum along each output, with the
input space being divided into (d + 2)™ = 6% = 216 cells via m(d +3) =
3.7 = 21 weight hyperparameters.

1 Support Vector Regression (SVR), foundational to the SVF-splines approach,
depends on hyperparameters, including the margin. This margin defines the
error-free region around the regression line and is crucial in SVR models.
Tuning it involves considering various values, a non-trivial task. Normalizing
data allows reinterpretation of margin values, with a margin of z corresponding
to 100-z% of the maximum output value. For the empirical case, we chose a
margin of 0.2, which seems large enough.
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Table 6 then presents the efficiencies estimated by DEA and SVF-
Splines with respect to each of the measures of efficiency, as well as
whether each DMU is considered e-insensitive efficient with respect to
the estimated production technology. The final three rows of Table 6
indicate the average efficiency measured by each method, the corre-
sponding standard deviation, and the number of DMUs considered
efficient with respect to each algorithm and measure. We observe that
SVE-Splines consistently estimates higher inefficiencies, indicating a
frontier which fits the data less closely than that of DEA, which suffers
from overfitting.> We observe that, while DEA always considers 19 units
as efficient regardless of the measure, SVF-Splines considers 7 DMUs as
efficient in the case of the Radial Input measure and 9 units when the
Directional Distance Function is applied. Moreover, under the SVF-
Splines model, 6 DMUs are considered efficient with respect to the
Radial Output measure, and no DMUs are considered fully efficient with

2 In all cases, a higher value of the measure indicates a greater level of in-
efficiency, with the exception of the Radial Input measure, where the inter-
pretation is reversed: higher values denote better technical efficiency.
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respect to the Range Adjusted Measure (WA), which is capable of
detecting additional sources of inefficiencies along any variables, and
projects to the strongly efficient frontier.

Regarding e-insensitive technical efficiency, 27 DMUs are considered
efficient with this margin of ¢ = 0.05. This can be seen as an indication
that the remaining 17 DMUs can be considered very far from efficient,
whereas those 27 which are within the margin can be considered to be
close to efficient with respect to this more robust notion of efficiency,
even if they are not completely efficient.

Additionally, we use the Li test adapted to the production context
[33], based on the Li test [22], as a tool to compare the vectors of effi-
ciency scores estimated by each method with respect to the same mea-
sures of efficiency. This is a nonparametric statistical test for the
similarity of two distributions of technical efficiency scores. We remark
that the efficiencies cannot be compared between different measures,
since each of them has different properties, whether in orientation,
range of potential values, and other properties. Hence, we compare the
efficiencies obtained, always with respect to the same measure, by both
DEA and SVF-Splines.

The version of the Li test that we use requires that the efficiencies are
in the output orientation. That is, that efficient units attain the value 1,
and larger values indicate higher inefficiencies, without an upper bound,
which is the same orientation as the output-oriented radial measure.
Therefore, we transform the other measures appropriately. For the
input-oriented measure, we transform it to its reciprocal 1 /x. For the
DDF and RAM, which are bounded measures of inefficiency, the corre-
sponding transformation is 1 /(1 — x). This is because, with the choices of
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weights used, they are inefficiency measures bounded between 0 and 1,
with efficient units attaining 0. The corresponding measures of in-
efficiency are 1 — x, but these are oriented as an input measure. In order
to orient them in the output sense as required for the Li Test, we
therefore calculate their reciprocal.

We present in Fig. 4 the kernel density distributions comparing the
efficiency scores estimated by DEA and SVF-Splines. We again observe
that SVF-Splines estimates higher average inefficiencies. The Li test
yields evidence that the distributions are indeed statistically signifi-
cantly different according to this measure in the radial measures and
RAM. Regarding the DDF, the p-value in question was 0.079, which does
not allow for this conclusion at a significance level of 0.05, but would do
so at the significance value of 0.10 also recommended by Simar and
Zelenyuk.

Therefore, we can observe in this empirical illustration that SVF-
Splines shows higher discriminatory power than DEA by considering
fewer units as fully efficient, estimating higher average inefficiencies
which show statistically significant differences compared to DEA.
Furthermore, SVF-Splines adds an additional layer of classification in
the difference between the estimated efficiencies and the e-insensitive
efficient units. This notion of e-insensitivity can be seen as a more robust
region of efficiency, which allows to label some DMUs as being highly
inefficient.

6. Conclusions and future work

Traditional non-parametric methods for the measurement of
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efficiency such as FDH and DEA have many interesting properties, but
have received criticism regarding their performance, such as that they
suffer from a problem of overfitting to the observed data (see, for
example, [14] or [35]), which can be attributed to the principle of
minimal extrapolation and may result in lack of generalization capa-
bility (low inferential power). An area of recent interest in the mea-
surement of efficiency is the use of machine-learning methodologies to
improve the estimators by overcoming these overfitting issues and
provide them with generalization capability and robustness.

One approach of particular interest is Support Vector Frontiers (SVF)
([36], 2022), which adapts Support Vector Regression to estimate
stepwise production technologies satisfying the axioms of Free Disposal
Hull except for minimal extrapolation. These production technologies
can then be convexified to obtain convex production technologies, along
the lines of DEA. However, the SVF approach presents some limitations
regarding its computational time, as well as its two-stage estimation,
where first a stepwise production frontier is calculated, which is later
convexified.

In this paper, we have proposed an extension of Support Vector
Frontiers by using a transformation function involving linear splines,
that is, with a transformation function involving kernels which generate
splines of order 1. The transformation function in SVF could be
considered as a splines transformation of order 0. This extension, which
we denote by SVF-Splines, allows for the direct estimation of convex,
piecewise linear, DEA-type, production technologies, in both a single
and multi-output context, with lower computational costs. This paper
defines the SVF-Splines model and characterizes its corresponding pro-
duction technology. The properties satisfied by DEA, except for minimal
extrapolation, are established for the production possibility set esti-
mated by SVF-Splines in a multi-input multi-output context. These
properties are envelopment of the observed data, free disposability of
inputs and outputs and convexity. Furthermore, the estimated set is
identified with a DEA estimator defined on a set of virtual points. Sub-
sequently, we have shown how to estimate technical inefficiency in the
SVE-Splines context for a variety of standard measures of efficiency from
the literature.

This contribution therefore proposes a significant improvement to
the SVF estimator by using a different transformation function under the
assumption of convexity. The change of kernel results in a different set of
restrictions being used to guarantee the satisfaction of the microeco-
nomic postulates.

The validity of the proposed approach is evaluated by a simulated
experiment where it was compared with DEA and CSVF (the convexified
version of the original SVF by Valero-Carreras, 2021, 2022). The results
from the simulation show that SVF-Splines can estimate production
technologies closer to the unobserved theoretical production frontier
than DEA and SVF-Splines, as measured using MSE and Bias statistics.
Furthermore, the computational time required by SVF-Splines is much
lower than that of CSVF, which must create and solve models with a
number of variables and restrictions which is exponential in the number
of inputs, whereas SVF-Splines only has linearly many such variables
and restrictions. Regarding the results, SVF-Splines obtained a similar
performance to DEA and CSVF in the single-input single-output scenario.
However, when the number of inputs is at least 2, SVF-Splines obtained
improvements between 52 % and 95 % in MSE and of 32 % and 77 % in
Bias with respect to DEA, and between 30 % and 44 % in MSE and be-
tween 18 % and 28 % in Bias for SVF-Splines when compared to CSVF.
Regarding the comparison with CSVF, only those scenarios with at most
3 inputs and 50 DMUs were solved, since in larger scenarios the
computation time required by CVSF becomes impracticable.

Furthermore, an empirical example is provided to illustrate the re-
sults that can be obtained using SVF-Splines. The database under study
consists of 44 regional tax offices in Spain. From this example, it can be
observed how SVF-Splines classifies a fewer DMUs as efficient than DEA
and how it estimates overall smaller average efficiencies, thus identi-
fying more sources of inefficiency. Efficiency scores are calculated with
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respect to the radial output and input measures, the Directional Distance
Function, and the Weighted Additive model, to illustrate the variety of
measures available in the literature of nonparametric efficiency esti-
mation. In addition, comparisons between the estimated vectors of ef-
ficiencies with respect to the same measure show significant differences
with respect to efficiency measures between DEA and SVF-Splines.
Additionally, when the more robust concept of epsilon-insensitive effi-
ciency is considered, the method classifies a larger number of DMUs as
efficient, which can be interpreted as evidence pointing towards that
those that are still labelled as inefficient through the new approach can
be considered to be very far from technical efficiency.

Regarding the possible utilization by a decision-maker, while he may
still be interested in a quick estimation and does not care about over-
fitting to the available data, DEA is a valid option. However, if the goal is
to obtain more robust results and to perform inference, SVF-Splines is an
option to consider. Regarding the limitations of the method, SVF-Splines
requires a cross-validation procedure which involves large grid of values
to establish three hyperparameters, which results in some computa-
tional load. It is still slower than DEA, which involves only linear pro-
gramming. This could be further improved by narrowing down the
potential ranges of values. The determination of knots may also be
problematic and could be performed in other ways (for example, a non
equi-distance split of each input dimension).

We finally mention various potential lines of future work, such as the
use of estimators involving higher order splines (quadratic, cubic, etc.).
Other types of transformation functions such as Radial Basis Functions
or Gaussian kernels could also be used. We observe that the restrictions
on the parameters which ensure that the production axioms hold are not
the same as in SVF, and more information about which properties of SVR
allow the satisfaction of the properties may be interesting, regarding
other potential kernels and their associated constraints. In this paper we
have focused our attention on measuring the efficiency of units in a
single dataset, and the proposed algorithm could be adapted to work
with panel data, and the study of whether the differences in efficiency
arise from its various sources (efficiency change, scale efficiency change,
technical change). Further validation using more real databases in
different contexts would always be useful. Other robustness increasing
methods such as relaxed support vector regression [30] or based on the
directional distance function [4] could also be considered. Additional
future research could entail comparative analyses among DEA-related
methods, such as Supper-Efficiency DEA [2] and SBM (Slack-Based
Measure) (see [34]), and the new approach (SVF-Splines) to elucidate
their relative advantages and limitations in different contexts. Addi-
tionally, further research is warranted to delve into the ‘black-box’
mechanism underlying support vector-based approaches for construct-
ing production frontiers. By addressing these areas, we aim to enhance
our understanding of efficiency measurement techniques and contribute
to the advancement of knowledge in this field.
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