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A B S T R A C T   

Among recent methodological proposals for efficiency measurement, machine learning methods are playing an 
important role, particularly in the reduction of overfitting in classical statistical methods. In particular, Support 
Vector Frontiers (SVF) is a method which adapts Support Vector Regression (SVR) to the estimation of pro
duction technologies through stepwise frontiers. The SVF estimator is convexified in a second stage to deal with 
convex technologies. In this paper, we propose SVF-Splines, an extension of SVF for the estimation of efficiency 
in multi-input multi-output production processes which uses a transformation function generating linear splines 
to directly estimate convex production technologies. The proposed methodology reduces the computational 
complexity of the original SVF and does not require a two-step estimation process to obtain convex production 
technologies. A simulated experiment comparing SVF-Splines with standard DEA and (convexified) SVF indicates 
better performance of the proposed methodology, with improvements of up to 95 % in mean squared error when 
compared with DEA. The computational advantages of SVF-Splines are also observed, with runtime over 70 times 
faster than SVF in certain scenarios, with better scaling as the size of the problem increases. Finally, an empirical 
illustration is provided where SVF-Splines is calculated with respect to various typical technical efficiency 
measures of the literature.   

1. Introduction 

When faced with a group of companies or other entities which an 
analyst wants to evaluate and compare from a benchmarking point of 
view, an important line of research is the determination of the under
lying production process that is behind the observed data. Many of the 
existing approaches in the literature can be split into two families, 
parametric and non-parametric methods. Among the most widely used 
parametric approaches, we encounter Stochastic Frontier Analysis (SFA) 
[1,26] while among the non-parametric perspectives, Data Envelopment 
Analysis (DEA) [5,8] has received enough attention to develop into its 
own research topic. 

Among the advantages of non-parametric approaches, their flexi
bility, the mild conditions required for their use, and the natural way in 
which they deal with multi-input multi-output production processes 
have been pointed out [11]. In particular, DEA is characterised by its 
estimation of the production technology as the smallest set which sat
isfies envelopment of the data from above, free disposability of inputs 
and outputs, and convexity. The smallest set is achieved via the principle 

of minimal extrapolation. Within this context, various types of as
sumptions are possible, yielding different estimators. For example, a 
related estimator is Free Disposal Hull (FDH) [12], which removes the 
convexity postulate. This results in stepwise frontiers in FDH as opposed 
to the piecewise linear frontiers estimated by DEA. 

As one of the most well-known non-parametric models, many 
properties of DEA have been considered. In particular, the postulate of 
minimal extrapolation has led to criticisms being leveraged that it is a 
conservative estimator, sometimes even labelling it as a pure descriptive 
approach [14]. This results in a set which fits too closely to the observed 
data and may not correctly estimate the underlying production process. 
Various authors have attempted to overcome this issue and endow DEA 
with inferential capabilities from the statistical point of view, such as 
[11], who propose a characterization of the Data Generating Process 
(DGP) that is behind the observations. They assume that the observa
tions are a sample of identically and independently distributed random 
variables with an unknown joint distribution. The task of the estimation 
of the production technology can then be identified with estimating the 
support of the underlying DGP. They used this setting to perform 
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inference tasks such as proving consistency and performing boot
strapping to estimate confidence intervals on DEA models. 

Recently, another approach which has become more important 
makes use of some of the similarities between nonparametric methods 
and the machine learning literature. Among machine learning models, 
Support Vector Machines (SVM) [38,39] are an interesting family of 
machine learning algorithms, since the approach is based on solid sta
tistical learning theory. Support Vector algorithms use the principle of 
Structural Risk Minimization to aim to obtain models with good 
generalization capabilities via bounds on estimates of the out-of-sample 
generalization error (prediction error) of models. Some recent contri
butions in this line of research ([36], 2022) proposed an adaptation of 
Support Vector Regression (SVR), called Support Vector Frontiers (SVF) 
to the estimation of stepwise production frontiers, i.e., comparable with 
FDH, and a Convexified SVF (CSVF), which is comparable to DEA. 

Other methodology works which use machine learning principles for 
measuring efficiency can be seen in the Corrected Convex Nonpara
metric Least Squares (CCNLS) proposal by [21], while [31] proposed a 
smooth nonparametric kernel frontier estimator. [10] introduced an 
estimator based on quadratic and cubic splines with shape constraints. 
Decision trees have been adapted in various ways, such as [14,35]. The 
Structural Risk Minimization was used to construct a technology esti
mator by [16]. A representation of production frontiers using hinging 
hyperplanes was introduced by [29]. Boosting methods have been 
adapted by [17,18]. Additive models based on splines have been pro
posed by [13]. In addition to the regression-based approaches, based on 
supervised learning methods, a recent contribution has proposed an 
unsupervised learning-based generalization of DEA [27,28], among 
others. 

One of the tools which allow SVMs to be very flexible is the use of 
transformation functions with associated kernels. These map the orig
inal space of predictors into a higher-dimensional space, where the 
classification/regression task is performed via a hyperplane which, 
when transformed back to the original space, can have different and 
flexible shapes. Usual kernels can be linear, polynomial, splines, 
gaussian, RBF kernels, among others. Within the SVM family, we 
encounter the Support Vector Regression (SVR) algorithm, which ap
plies the SVM approach to regression problems. The flexibility of SVM 
using kernels allows SVR to estimate functions satisfying a variety of 
properties. An important family of kernels is given by the splines 
generating kernels, which allow the flexibility of splines interpolation to 
be used in conjunction with Support Vector Machines [39]. 

In the context of efficiency measurement, SVF [36,37] resorts to SVR 
that partitions the input space into a grid of cells, and associates to each 
cell values of 0 or 1 according to the location of data points on the grid. 
The use of constant values results in the use of step functions, which 
yields a stepwise estimation of the production frontier, in line with FDH, 
which is at a second stage convexified to obtain a production technology 
along the lines of DEA. However, this choice of transformation function 
causes the method to have a large computational expense. We remark 
that the Boolean grid of values used by SVF can be seen as a kernel 
generating splines of order 0, ([39], p. 464). 

In this paper, we propose SVF-Splines, an extension of SVF which 
uses a transformation function involving splines of order 1. This results 
in piecewise linear estimators which can be directly compared with DEA 
while, at the same time, reducing the computational complexity of SVF, 
as we will show. We consider the restrictions which ensure that the 
estimator satisfies the microeconomic postulates of convexity, free 
disposability in inputs and outputs and data envelopment. We then 
compare this estimator in a computational experiment with traditional 
DEA and with CSVF, that is, the convexified version of SVF. We observe 
better results with lower computation times, particularly as the number 
of observations and dimensions increase. We also adapt a variety of 
classical measures of efficiency to the SVF-Splines estimator and illus
trate with an empirical example the efficiencies obtained by DEA and 
the new approach. 

The rest of the paper is structured as follows. Section 2 describes 
background concepts about Data Envelopment Analysis, Support Vector 
Regression and (Convex) Support Vector Frontiers. Section 3 adapts the 
linear splines kernel to SVF to introduce the SVF-Splines algorithm, 
proves that it satisfies the microeconomic postulates, characterizes the 
estimated technology as a DEA-type technology, and shows how to 
calculate a variety of measures of efficiency with the SVF-Splines esti
mator. Section 4 results from a computational experiment comparing 
the proposed SVF-Splines algorithm to DEA and Convex Support Vector 
Frontiers, as well as a discussion about their computational character
istics. Section 5 then illustrates the results obtained by SVF-Splines in an 
empirical example. Finally, Section 6 presents the conclusions obtained 
and outlines further possible lines of research. 

2. Background 

2.1. Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is one of the most well-known 
techniques for measuring the efficiency of a set of units which use a 
variety of inputs to produce a variety of outputs. It is a nonparametric 
technique which estimates technical efficiency as the “distance” (along 
some permissible direction) to the efficient frontier of a production 
technology. The DEA production technology consists of the unique 
smallest set which envelops the observations, while satisfying convexity 
and free disposability of inputs and output [5]. In a production process 
with n DMUs (Decision Making Units) which use m inputs and produce s 
outputs, we denote inputs as x ∈ Rm

+ and outputs as y ∈ Rs
+. LetX ∈ Rm×n

+

(Y ∈ Rs×n
+ ) be the matrix containing all the inputs (outputs) of the DMUs 

in the dataset, with each DMU as a column. The DEA estimate of the 
technology under Variable Returns to Scale (VRS) is [5]: 

T̂DEA =
{
(x, y) ∈ Rm+s

+ : x ≥ Xλ, y ≤ Yλ, λ ≥ 0, λ1=1
}

(1) 

DEA assumes convexity of its production technology, which is a 
polyhedral set. When the convexity assumption is relaxed, we obtain the 
Free Disposal Hull (FDH) estimator, which envelops the data and sat
isfies free disposability of inputs and outputs and minimal extrapolation 
but does not satisfy convexity. The production technology estimated by 
FDH is stepwise, and the convexification of this technology is the tech
nology estimated by DEA on the same data. 

A region of the production technology of particular importance for 
the measurement of the efficiency of DMUs is the efficient frontier. 
There are various possible characterizations of this subset, such as the 
weakly efficient frontier δW(T) and strongly efficient frontier δS(T): 

δW(T) = {(x,y) ∈ T : x̂ <x, ŷ >y⇒(x̂, ŷ) ∈ T} (2)  

δS(T) = {(x,y) ∈ T : x̂ ≤ x, ŷ ≥ y,(x,y) ∕= (x̂, ŷ)⇒(x̂, ŷ) ∕∈ T} (3) 

Elements of the strongly efficient frontier do not admit any 
improvement along any variable (input or output) without worsening 
along some other component (input or output) while remaining feasible. 
The weakly efficient frontier, however, consists of those elements that 
are not strictly Pareto dominated by any other feasible bundle, i.e., it 
also contains those elements which allow for improvement along one 
dimension while keeping the remaining variables constant. These ele
ments do not belong to the strongly efficient frontier. Hence, the 
strongly efficient frontier is a subset of the weakly efficient frontier, 
though they do not necessarily coincide. In the case of DEA, the efficient 
frontiers are both piecewise linear sets. Various measures of efficiency 
project to either of the two efficient frontiers. 

In this paper, as technical efficiency measures, we consider the radial 
measures, both input and output oriented, which were the first intro
duced in [15,5]. We also consider the Directional Distance Function [7], 
and the Weighted Additive Measure [9]. 

With respect to an arbitrary production technology T, the output- 
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oriented radial measure measures how much the outputs can be 
increased by the same proportion while remaining feasible. It can be 
calculated using the following model: 

ψ(x, y) = max{ψ ∈ R : (x,ψy) ∈ T} (4) 

Similarly, the input-oriented radial measure describes how much 
every input can be reduced by the same amount while the DMU does not 
become infeasible, and is calculated by solving the following model: 

θ(x, y) = min{θ ∈ R : (θx, y) ∈ T} (5) 

The directional distance function (DDF) projects the given bundle of 
inputs and outputs along a pre-specified direction, given by a nonzero 
directional vector g = (g− ,g+). It is a graph type measure, since it seeks 
to improve both inputs and outputs simultaneously. It was introduced by 
[7]: 

β(x, y) = max{β ∈ R : (x − βg− , y+ βg+) ∈ T} (6) 

In this paper, we choose the directional vector g = (x, y) given by the 
values of the input-output bundle itself. This choice results in a units- 
invariant measure. The DDF and both radial measures project DMUs 
to the weakly efficient frontier, so there may be additional potential 
improvements (slacks) along some directions. 

The Weighted Additive (WA) measure which we consider ensures 
that DMUs are projected to the strongly efficient frontier, as it detects 
slacks along any input or output. It takes as its basis a slightly different 
DEA model, introduced in [23]. Given input-output weights (ρ− ,
ρ+) ∈ Rm+s

++ , the Weighted Additive Model is calculated as follows: 

WA(x, y) = max
{

ρ− s− + ρ+s+ : (x − s− , y+ s+) ∈ T, (s− , s+) ∈ Rm+s
+

}

(7) 

In particular, we use weights corresponding to the Range Adjusted 
Measure [9]. These weights are given by ρ− (j) = 1

(m+s)R−
j 

and ρ+(r) = 1
(m+s)R+

r
, 

where R−
j is the range of input j and R+

r is the range of values of output r. 
This choice results in a graph measure which is invariant to units of 
measurement. 

The radial measures both determine as efficient those DMUs with 
efficiency 1. However, in the case of the output orientation, every DMU 
attains values larger than unity, while in the input oriented measure the 

efficiencies attain values between 0 and 1. Meanwhile, the DDF and WA 
can be considered measures of inefficiency, as efficient DMUs attain 
values of 0, and larger values indicate less efficient units. With the 
choices of weights and directional vector above, they are bounded above 
by 1. 

2.2. Support Vector Regression and splines kernel 

We now describe the Support Vector Regression (SVR) algorithm and 
the splines kernel that we will use. SVR is a regression algorithm that 
adapts the Structural Risk Minimization problem to estimate a regres
sion on a variable while not overfitting too much to the data. Originally 
introduced with the Euclidean or l2 norm, it has been extended to deal 
with other norms, such as the l1 norm, which results in a linear objective 
function, other lp or the l∞ norms (see e.g. [6,32], and [41]). The base 
SVR model with respect to such a norm (with margin ε) is given by: 

Min
w,b,ξ́ i ,ξi

‖ w ‖ +C
∑n

i=1

(
ξʹ

i
2
+ ξ2

i
)

yi − (w⋅xi + b + ε) ≤ ξ́ i, i = 1, ..., n

(w⋅xi + b − ε) − yi ≤ ξi, i = 1, ..., n

ξ́ i, ξi ≥ 0, i = 1, ..., n

(8) 

The objective function of this model consists of two parts, a regula
rization term ‖ w ‖ and an empirical error term 

∑n
i=1

(
ξ́i

2
+ ξ2

i
)
, which 

are combined via a weight C. This C is a hyperparameter which, together 
with the margin hyperparameter ε, is obtained via a cross-validation 
process. The SVR model estimates a decision function given by f̂ (x) =
w∗⋅x + b∗ with errors of ξ, ξ́  for the observed data outside of an 
ε-insensitive region. Thus, the observations within an ε margin of the 
estimated function ̂f (x) attain an error of 0, and the empirical errors are 
measured to this ε margin of the decision function. A graphical illus
tration of a function estimated by the model can be found in Fig. 1. 

The SVR method can be adapted to estimate nonlinear functions via 
the use of a transformation function ϕ which maps the space of predictor 
variables into a higher-dimensional space in such a way that the ob
tained estimation function is linear in the transformed space but not in 
the original space. This is sometimes called the “kernel trick” in the 

Fig. 1. Linear Support Vector Regression estimation.  
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literature. The kernel SVR model with transformation function ϕ is the 
following: 

Min
w,b,ξ́ i ,ξi

‖ w ‖ +C
∑n

i=1

(
ξ́i

2
+ ξ2

i
)

yi − (w⋅ϕ(xi) + b + ε) ≤ ξ́ i, i = 1, ..., n

(w⋅ϕ(xi) + b − ε) − yi ≤ ξi, i = 1, ..., n

ξ́ i, ξi ≥ 0, i = 1, ..., n

(9) 

When a transformation function ϕ is used, the function estimated by 
the model is f̂ (x) = w∗⋅ϕ(x)+ b∗, and its shape depends on the charac
teristics of the transformation function ϕused. There is a wide variety of 
possible kernels to use in this context, such as linear, polynomial, 
Gaussian, grid-like and splines kernels. 

In this paper, we focus our attention on the splines transformation 
function proposed by Vapnik in ([39], p. 464). This transformation uses 
a finite number of knots to construct splines of order q by splitting each 
input dimension into a finite number of knots. Splines are flexible 
functions defined piecewise by polynomials of degree q, whose formu
lation is given by: 

ϕ(xi) =
(

1, x(1)
i ,

(
x(1)

i

)2
, ...,

(
x(1)

i

)q
,
(

x(1)
i − t(1)1

)

+

q
, ...,

(
x(1)

i − t(1)k1

)

+

q
,

1, x(2)
i ,

(
x(2)

i

)2
, ...,

(
x(2)

i

)q
,
(

x(2)
i − t(2)1

)

+

q
, ...,

(
x(2)

i − t(2)k2

)

+

q
,

.

.

.

1, x(m)

i ,
(

x(m)

i

)2
, ...,

(
x(m)

i

)q
,
(

x(m)

i − t(m)

1

)

+

q
, ...,

(
x(m)

i − t(m)

km

)

+

q)

(10) 

In this transformation function, the jth component of x is trans
formed into a 

(
1 + q + kj

)
-dimensional vector, where kj is the number of 

knots along dimension j. The first component of such vector is a constant 
value of 1, the next q components are powers of the original component 
of x, and the final kj elements are defined by: 

(
x(j)

i − t(j)lj

)q

+
=

⎧
⎪⎨

⎪⎩

(
x(j)

i − t(j)lj

)q
if x(j)

i > t(j)lj

0 if x(j)
i ≤ t(j)lj

, lj = 1, ..., kj, j = 1, ...,m

(11) 

In particular, splines of order q = 0 yield step functions as estimators, 
while splines of order q = 1, also called linear splines, produce piece
wise linear estimators, see Fig. 2 for an example. Higher values of q 
provide piecewise approximations using polynomials of degree q. In this 
paper, we focus on splines of order q = 1, inspired by the nature of DEA, 
which estimates a piecewise linear production function. 

Fig. 2. Support Vector Regression with linear splines.  
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2.3. Support Vector Frontiers 

A recent contribution [36] shows how to adapt Support Vector 
Regression to the estimation of production functions in the single-output 
case. The authors adapt the SVR model to satisfy the properties of pro
duction functions of envelopment from above and monotonicity and 
develop Support Vector Frontiers (SVF). They propose a transformation 
function ϕG

SVF(x) of the space of inputs which consists of binary values on 
a grid with its components taking values of 0 or 1 whenever they are 
dominated by x. As a consequence, SVF estimates step production 
functions, in other words, comparable with the Free Disposal Hull esti
mator. The authors also show how to convexify this technology in order 
to estimate DEA-like production functions, via Convexified Support 
Vector Frontiers (CSVF). Additionally, SVF has later been extended to 
the multi-output context in [37]. The multi-output SVF model is given 
by:  

We remark that this model, when s = 1, is equivalent to the single- 
output model introduced in [36]. It involves a transformation function 
ϕG

SVF(x) associated to a grid G common to all outputs, which partitions 
the input space into a grid of binary values, as well as a different set of 
weights w(r)for each output dimension. Each vector of weights has one 
component for each cell of the grid G. In (12), ϕG

SVF(x) can be considered 
a splines transformation of order 0. It results in an estimation for each 
output ŷ(r)

SVF(xi) := w(r)⋅ϕG
SVF(xi), r = 1, ..., s, which is a stepwise pro

duction frontier in line with Free Disposal Hull. 
The SVF model has an empirical error ξ(r)i associated with each y(r)i , 

the output dimension rof DMU i, and model (12) minimizes the weighted 
sum ξ(r)i of the regularization term 

∑s
r=1 ‖ w(r)‖ and the empirical error 

∑s
r=1

∑n
i=1ξi

(r), weighted by a parameter C. The first constraint in (12) 
ensures that the estimator envelops the observed data from above, while 
the second constraint will penalize the error committed beyond a margin 
parameter ε via the empirical error ξ(r)i , which will be nonnegative by the 
final restriction. Finally, the third restriction, which involves variables 
W(r)

l1 ...lm 
defined by W(r)

l1 ...lm :=
∑

s1=1,...,l1
⋮

sm=1,...,lm

w(r)
s1 ...sm , for each output dimension 

r = 1, ...,s, will ensure that the estimated output ŷ(r)
SVF(x) is a monotonic 

non-decreasing function. Once model (12) is solved, optimal values w∗(r)

are obtained, and the estimated output is given by ŷ(r)
SVF(x) = w∗(r)⋅ 

ϕG
SVF(x) for each r = 1, ..., s. The associated production technology is 

given by: 

T̂SVF :=
{
(x, y) ∈ Rm+s

+ : y ≤ ŷSVF(x)
}

(13) 

By ([37], Section 3.1), this technology satisfies envelopment of the 
data, free disposability, and it is an FDH-style production technology. In 

particular, it can be characterised as an FDH-type estimator on a set of 
“virtual points” defined by the grid involved in the transformation 
function ϕG

SVF(x). These points are virtual in the sense that they are not 
necessarily in the original data. Instead, they are defined using the 
predictions of the model on extreme points of the grid cells. In a second 
stage, this production technology is convexified to obtain a DEA-style 
technology with respect to these virtual points, yielding the Con
vexified SVF (CSVF) estimator. This results in a two-stage estimation of 
convex production technologies. In particular, to simplify computation, 
each split input dimension is split in the same number of nodes, which 
leads to a single hyperparameter d to be tuned together with Cand ε via a 
five-fold cross-validation procedure. 

The margin hyperparameter ε can be used to define a more robust 
notion of technical efficiency, which the authors name ε-insensitive 
technical efficiency. This notion considers any DMU within a margin ε of 
the technical efficient frontier to be ε-insensitive technically efficient, 

and allows for the identification of those units which are not considered 
ε-insensitive technically efficient as units which are far from being 
technically efficient. 

As recognized by its authors, the SVF estimator has some limitations, 
particularly of computational complexity. The proposed model involves 
a large amount of variables and restrictions, given that there is one w 
associated to each cell of the grid, which results in an exponential 
(≈ mdm) number of restrictions involving the W. 

In this paper, we propose a way to overcome these limitations by 
using a model based on linear splines in order to reduce the computa
tional complexity and directly estimate convex production technologies 
in a single stage. 

3. Support Vector Frontiers with kernel splines 

3.1. The single-output case 

In this section, we show how to adapt a linear splines kernel (with 
q = 1) to measure efficiency via the modification of the Support Vector 
Frontiers estimation with this transformation function. This adaptation 
reduces the exponential complexity of the restrictions of model (12) to a 
set of a linear number of restrictions via the choice of nodes along each 
of the input components. We begin by presenting the single-output 
model and proving its properties, before generalizing it to the multi- 
output case: 

(12)  
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Min
w,ξi

‖ w ‖ +C
∑n

i=1
ξi

s.t.

w⋅ϕG
SVF− SP(xi) − yi ≤ ε + ξi i = 1, ..., n (14.1)

yi − w⋅ϕG
SVF− SP(xi) ≤ 0 i = 1, ..., n (14.2)

W(j)
lj ≥ 0 lj = 0, ..., kj j = 1, ...,m (14.3)

w(j)
0 ,w(j)

− 1 ≥ 0 j = 1, ...,m (14.4)

w(j)
k ≤ 0 k = 1, ..., kj j = 1, ...,m (14.5)

ξi ≥ 0 i = 1, ..., n (14.6)
(14)  

where 

with 

(
x(j)

i − t(j)lj

)

+
=

⎧
⎨

⎩

x(j)
i − t(j)lj if x(j)

i > t(j)lj

0 if x(j)
i ≤ t(j)lj

, lj = 1, ..., kj, j = 1, ...,m (16) 

Thus, ϕG
SVF− SP(xi) is a transformation from Rm→R

2m+
∑m

j=1
kj (i.e., a 

∑m
j=1

(
kj + 2

)
-dimensional space). We denote this dimension by h. The 

corresponding weights vector is: 

w =
(

w(1)
− 1,w

(1)
0 ,w(1)

1 , ...,w(1)
k1
, ... ,w(m)

− 1 ,w
(m)

0 ,w(m)

1 , ...,w(m)

km

)
(17) 

We remark that weights w(j)
1 , ...,w(j)

kj 
correspond to the nodes t(j)1 , ..., t(j)kj 

in (15). Hence, we denote the first two components along each input 
dimension j, which do not correspond to any such nodes, by w(j)

− 1 and w(j)
0 . 

For ease of notation, we combine those weights which get used in each 
interval between two consecutive nodes of the splines transformation: 

W(j)
lj =

∑lj

k=0

w(j)
k lj = 0, ..., kj, j = 1, ...,m (18) 

This transformation function and associated kernel involves various 
parameters, which must be estimated or chosen appropriately. Each 
input dimension j is split into a number kj of nodes, and defines kj +2 
components of both w and ϕ. We choose to divide each input dimension 
into a number d of nodes between the minimum and maximum values 
observed along each dimension of the same width (max − min)/d. This 
defines d + 1 nodes for each input, so that the dimension of the trans
formation function, as well as that of w, is h = m(d+ 3). This value d is a 
hyperparameter of the algorithm which will be estimated via a five-fold 
cross-validation process together with C and ε. The input space is thus 
divided into (d + 2)m grid cells. 

Solving problem (14) yields optimal values w∗ and ξ∗ and the cor
responding piecewise linear production function is given by f̂ (x)=
ŷSVF− SP(x) = w∗⋅ϕG

SVF− SP(x). We will denote the corresponding W(j)
lj at 

optimum by W(j)
lj

∗
as well. We now prove that f̂ (x) satisfies data envel

opment, monotonicity and concavity. Note that the properties of free 
disposability and convexity for the multi-input multi-output framework 
are translated into (non-decreasing) monotonicity and concavity of the 
corresponding production function for the multi-input single-output 
case, respectively. 

Proposition 3.1. For each i = 1, ..., n, f̂ (x) satisfies envelopment of the 

data. That is, for each i = 1, ..., n, we have yi ≤ f̂ (xi). 

Proof. Holds by constraint (14.2) and definition of ̂f (x), which forces 
yi − w∗⋅ϕG

SVF− SP(xi) = yi − f̂ (xi) ≤ 0 for each i.■ 
We now prove that f̂ (x) is monotonic non-decreasing. 

Proposition 3.2. If x ∈ Rm and z ≥ x, then f̂ (z) ≥ f̂ (x). 

Proof. Assume that z ≥ x. We construct a series of inequalities where 
at each step only one component changes. That is, 

x = α0 = (x(1), ..., x(m)) ≤ α1 = (z(1), ..., x(m)) ≤ ... ≤ αm

= (z(1), ..., z(m)) = z.

We will prove the inequality between αj− 1 and αj for each j = 1,...,m. 
Hence, we consider f̂

(
αj
)
− f̂

(
αj− 1

)
= w∗⋅ϕG

SVF− SP
(
αj
)
− w∗⋅ 

ϕG
SVF− SP

(
αj− 1

)
= w∗⋅

(
ϕG

SVF− SP
(
αj
)
− ϕG

SVF− SP
(
αj− 1

))
. Since the only 

component that changes between αj− 1 and αj is the jth component and w∗

is fixed, the only components of ϕG
SVF− SP that change are those involving 

the jth component. Furthermore, β(j) = α(j)
j − α(j)

j− 1 ≥ 0. The other terms 
cancel out, and we have: 

f̂
(
αj
)
− f̂

(
αj− 1

)
= w(j)∗

− 1 (1 − 1) + w(j)∗
0 β(j)

+
∑kj

k=1
w(j)∗

k

((
α(j)

j − t(j)k

)

+
−
(

α(j)
j− 1 − t(j)k

)

+

)
.

For each k, the terms involving t(j)k within the summatory can either 
both be active, i.e., α(j)

j ≥ α(j)
j− 1 ≥ t(j)k , both inactive, that is, 

t(j)k ≥ α(j)
j ≥ α(j)

j− 1, or only the α(j)
j active, which happens when 

α(j)
j ≥ t(j)k ≥ α(j)

j− 1. The term 
(

α(j)
j − t(j)k

)

+
−
(

α(j)
j− 1 − t(j)k

)

+
is then 

(
α(j)

j − t(j)k

)

+
−
(

α(j)
j− 1 − t(j)k

)

+
= α(j)

j − α(j)
j− 1 = β(j) (both active), 0 − 0 =

0 ≤ β(j) if both are inactive, or 
(

α(j)
j − t(j)k

)
− 0 = α(j)

j − t(j)k ≤ α(j)
j − α(j)

j− 1 =

β(j). Thus, in any case, these terms are bounded above by β(j). Then, each 
such term is multiplied by w(j)∗

k , which is non-positive by restriction 

(14.5). Thus, we have f̂
(
αj
)
− f̂

(
αj− 1

)
≥ w(j)∗

0 β(j) +
∑kj

k=1w(j)∗
k β(j) =

W(j)∗
kj

β(j) ≥ 0. 

We remark that this final inequality holds as W(j)∗
kj

≥ 0, by constraint 

(14.3). Therefore, we have f̂
(
αj
)
≥ f̂

(
αj− 1

)
for each j. By applying this 

argument repeatedly, we obtain that f̂ (z) − f̂ (x), as claimed. Thus, f̂ (x)
is monotonic non-decreasing. ■ 

Next, to prove concavity of the estimated production function, we 
consider the nature of the components of the transformations, and the 
signs of the components of w∗. Intuitively, as each of the individual w 
(except the first ones) are negative, so the slope of the estimated frontier 
only decreases as more terms activate, resulting in a concave production 
function. 

Proposition 3.3. The estimated production function f̂ (x) is concave. 

Proof. We consider each component of ϕG
SVF− SP(x). The first two terms 

along each input dimension are linear, and their corresponding weights 
in w∗, that is, w∗

− 1 and w∗
0, are non-negative by constraint (14.4). Thus, 

the corresponding summands in the expression for ̂f (x) are linear, hence 
both convex and concave. The remaining terms are defined as the 

ϕG
SVF− SP(xi) =

(
1, x(1)

i ,
(

x(1)
i − t(1)1

)

+
, ...,

(
x(1)

i − t(1)k1

)

+
, ..., 1, x(m)

i ,
(

x(m)

i − t(m)

1

)

+
, ...,

(
x(m)

i − t(m)

km

)

+

)

(15)   
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maximum between two linear functions, the constant 0 and x(j) − t(j)lj . 
Since both terms are linear, they are convex, i.e., the area above their 
respective curves is convex. The area of the maximum between two 
functions corresponds to the intersection of both regions, so each term in 
ϕG

SVF− SP(x) involving a maximum is convex. These terms are then 
multiplied by the corresponding weights w(j)∗

lj , which are non-positive by 
restriction (14.5), so the corresponding products are concave functions. 
Thus, the expression for f̂ (x) is a sum of concave functions, and is thus 
concave. ■ 

Having established these properties of the estimated production 
function, we now move on to the multi-output case, and consider the 
corresponding production technology. 

3.2. The multi-output case 

We now present the multioutput SVF-Splines model, which extends 
the above single-output model to the multi-output case following the 
approach by [40]. The idea is that a multi-output model can be obtained 
by using a transformation of the outputs and estimating weights for each 
of the outputs separately, so that with the same grid in the input space 
(which a common structure of knots for all the outputs), different esti
mations are obtained for each of the multiple outputs. The model is as 
follows:  

Here, ϕG
SVF− SP(x) is defined as in the single-output model by (15), 

whereas there is a w(r) associated with each output. Correspondingly, 
the Ware defined by: 

W(j)
lj

(r)
=

∑lj

k=0

w(j)(r)
k , lj = 0, ..., kj, j = 1, ...,m, r = 1, ..., s . (20) 

In this setting, once model (19) is solved yielding optimal values w∗

and ξ∗, we define the rth component of the output vector corresponding 
to input profilex by: 

f̂
(r)
(x) = ŷ(r)

SVF− SP(x) = w(r)∗⋅ϕG
SVF− SP(x). (21) 

This defines the multi-output production frontier f̂(x). The corre
sponding production possibility set or technology is defined as the set of 
those collections of inputs and outputs whose outputs lie below the 
production frontier: 

T̂SVF− SP :=
{
(x, y) ∈ Rm+s

+ : y ≤ f̂ (x)
}

(22) 

We now prove that T̂SVF− SP satisfies data envelopment, free dispos
ability in inputs and outputs and convexity. With these definitions, we 
can extend the results above to the multi-output estimator. The proofs 

are very similar to the ones in [37] Lemma 1, Propositions 1, 2, 3, 4. As 
in the single-output model, the hyperparameters C, ε and d are estimated 
by five-fold cross-validation. 

Proposition 3.4. For all i = 1, ..., n, we have 
(
xi,yi

)
∈ T̂SVF− SP. 

Proof. Follows by constraint (19.2) and the definition of the technol
ogy. ■ 

Proposition 3.5. T̂SVF− SP satisfies free disposability in inputs and outputs. 

Proof. Let 
(
x, yx

)
∈ T̂SVF− SP and 

(
z, yz

)
satisfy z ≥ x and yz ≤ yx. Then, 

by Proposition 3.2 we have f̂
(r)
(z) ≥ f̂

(r)
(x) for each component of ̂f(x). 

Since yz ≤ yx, we have that yz ≤ yx ≤ f̂(x) ≤ f̂(z), so that 
(
z,yz

)
∈

T̂SVF− SP and T̂SVF− SP satisfies free disposability. ■ 

Proposition 3.6. T̂SVF− SP is convex. 

Proof. By Proposition 3.3, each component of ̂f(x) is concave. Thus, so 
is f̂(x). Now, ([24], p. 81) shows that a function f̂(x) is concave if and 
only if its hypograph is a convex set, where the hypograph is HGf̂ = {(x,

y) ∈ Rm+s : y ≤ f̂(x)}. In this context, the production technology 
T̂SVF− SP =

{
(x, y) ∈ Rm+s

+ : y ≤ f̂ (x)
}
= HGf̂ ∩ Rm+s

+ is the intersection of 
the hypograph and the non-negative quadrant of Rm+s, and both these 

sets are convex. Therefore, since the intersection of convex sets is a 
convex set, the production technology T̂SVF− SP is a convex set. 

Proposition 3.7. If s = 1, then the multi-output model coincides with the 
single-output model. 

Proof. Clear from the formulation of the models. ■ 

Corollary. T̂DEA ⊆ T̂SVF− SP. 

Proof. The set T̂DEA is, by the principle of minimal extrapolation, the 
intersection of all sets satisfying envelopment, free disposability and 
convexity. By Propositions 3.4, 3.5 and 3.6, T̂SVF− SP satisfies envelop
ment, free disposability and convexity. Thus, T̂DEA is a subset of T̂SVF− SP. 
■ 

3.3. Characterization of the estimated technology as a DEA-type 
technology 

We now proceed to characterise the estimated technology as a DEA- 
type technology with respect to a set of “virtual points”, which are not 

Min
wr ,ξri

∑s

r=1
‖ w(r) ‖ + C

∑s

r=1

∑n

i=1
ξ(r)i

s.t.

w(r)⋅ϕG
SVF− SP(xi) − y(r)

i ≤ ε + ξ(r)i i = 1, ..., n r = 1, ..., s (19.1)

y(r)
i − w(r)⋅ϕG

SVF− SP(xi) ≤ 0 i = 1, ..., n r = 1, ..., s (19.2)

W(j)
lj

(r)
≥ 0 lj = 0, ..., kj j = 1, ...,m r = 1, ..., s (19.3)

w(j)
0

(r)
,w(j)

− 1
(r)

≥ 0 j = 1, ...,m r = 1, ..., s (19.4)

w(j)
k

(r)
≤ 0 k = 1, ..., kj j = 1, ...,m r = 1, ..., s (19.5)

ξ(r)i ≥ 0 i = 1, ..., n r = 1, ..., s (19.6)

(19)   
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observed in the data but rather constructed from the SVF-Splines esti
mations and the extreme points of the grid cells involved in the splines 
transformation function. In other words, we prove that the estimated 
technology consists of the smallest convex set enveloping these virtual 
points which satisfies free disposability, i.e., a DEA-type technology with 
these virtual points as observations. 

A grid consists of cells Cl1 l2 ...lm , where lj = 0, ..., kj for each input j = 1,

...,m, with corresponding lower extreme knot-point al1 l2 ...lm =
(

t(1)l1 ,t(2)l2 ,...,

t(m)

lm

)
. Each grid cell has 2m extreme points and is the convex closure of its 

extreme points. The output values estimated by SVF-Splines at each 
extreme point of a grid cell is given by ̂f

(
al1 l2 ...lm

)
= ŷSVF− SP

(
al1 l2 ...lm

)
, and 

the set of all pairs 
(
al1 l2 ...lm , f̂

(
al1 l2 ...lm

))
forms the virtual data of T̂SVF− SP. 

In other words, if we let A be the matrix containing the inputs al1 l2 ...lm as 
columns and f̂ (A) be the matrix of corresponding estimated outputs, we 
have: 

T̂SVF− SP− DEA =
{
(x, y) ∈ Rm+s

+ : x ≥ Aλ, y ≤ f̂ (A)λ, λ ≥ 0, λ1=1
}

(23) 

By the properties of DEA, this set is the smallest set satisfying 
envelopment of the “virtual points” (al1 l2 ...lm , f̂ (al1 l2 ...lm )) determined by 
SVF-Splines, free disposability in inputs and outputs, and convexity. We 
now prove the following equality: 

Proposition 4. T̂SVF− SP− DEA = T̂SVF− SP. In other words, T̂SVF− SP is a DEA- 
type production technology with respect to the virtual points 

(
al1 l2 ...lm ,

f̂
(
al1 l2 ...lm

))
for each l1 = 0, ...,k1; ...; lm = 0, ...,km. 

Proof. Recall the definition of the technology estimated by SVF- 
Splines (22): 

T̂SVF− SP :=
{
(x, y) ∈ Rm+s

+ : y ≤ f̂ (x)
}
.

We now prove that these two characterizations (22) and (23) of the 
production technology coincide. By Propositions 3.5 and 3.6, we have 
that T̂SVF− SP is a production possibility set satisfying free disposability of 
inputs and outputs and convexity. Regarding envelopment of the virtual 
points, we have proved envelopment of the original data in Proposition 
3.4, but now the data defining the technology are not the original data 
but instead the virtual data given by f̂ (x). These points are also con
tained in T̂SVF− SP by the definition of the technology, thus T̂SVF− SP also 
envelops the virtual data (al1 l2 ...lm , f̂ (al1 l2 ...lm )) for each extreme of the grid. 
Therefore, by the principle of minimal extrapolation, we have 
T̂SVF− SP− DEA ⊆ T̂SVF− SP. 

For the reverse inclusion, we consider an arbitrary (x,y) ∈ T̂SVF− SP, 
and we will prove that (x,y) ∈ T̂SVF− SP− DEA. The input profile x belongs 
to a cell of the grid, which we denote by C, and is defined by a set of 
extreme points α1, ...,α2m . In particular, C is the convex closure of these 
points. As x ∈ C, it can be written as a convex linear combination of its 
corner points, that is, there exists λ ≥ 0 with 

∑2m

v=1λv = 1 such that x =
∑2m

v=1αvλv We now show that y ≤ f̂ (A)λ. Now, f(x) is a piecewise linear 
function, which is linear within the confines of each cell of the grid. 

Thus, since x ∈ C, we have f̂ (x) = f̂
(
∑2m

v=1αvλv

)

=
∑2m

v=1 f̂ (αv)λv =

f̂ (A)λ. As, by assumption, (x,y) ∈ T̂SVF− SP, we have that y ≤ ŷSVF− SP(x)

= f̂ (x) = f̂ (A)λ. Thus, T̂SVF− SP ⊆ T̂SVF− SP− DEA, and equality follows. ■ 

3.4. Measures of efficiency using SVF-Splines 

We will use this characterization of the estimated technology T̂SVF− SP 
as a DEA-like technology with respect to a set of virtual points to adapt 
some of the measures of efficiency available in the literature to this 
context. We adapt the radial measures, both input and output oriented, 
as well as the models defining the Directional Distance Function and the 
Weighted Additive Measure. With respect to the virtual points 

(
al1 l2 ...lm ,

f̂
(
al1 l2 ...lm

))
defined above, the output-oriented radial measure can be 

calculated using the following model [5]: 

ψ(x, y) = max{ψ ∈ R : (x,ψy) ∈ T̂SVF− SP} = max{ψ : x ≥ Aλ,ψy

≤ f̂ (A)λ, λ ≥ 0, λ1= 1} (24) 

Similarly, the input-oriented radial measure is calculated by solving 
model [5]: 

θ(x, y) = min{θ ∈ R : (θx, y) ∈ T̂SVF− SP} = min{θ : θx ≥ Aλ, y ≤ f̂ (A)λ, λ

≥ 0, λ1= 1}
(25) 

The directional distance function (DDF), with directional vector g =

(g− , g+) [7] is the solution to the following model: 

β(x, y) = max{β ∈ R : (x − βg− , y+βg+) ∈ T̂SVF− SP}

= max{β : x − βg− ≥ Aλ, y+βg+ ≤ f̂ (A)λ, λ ≥ 0, λ1 = 1}
(26) 

The weighted additive (WA) model [23] is calculated in the case of 
resorting to the new approach as:   

These linear models allow for the estimation of the efficiency of an 
input-output bundle with respect to the SVF-Splines estimated produc
tion technology. They can further be extended to calculate ε-insensitive 
technical efficiency, as in [37], by substituting the terms ̂f (A) by ̂f (A) −
ε in the second restriction of each of the models above. For example, the 
ε-insensitive radial output efficiency would be calculated using: 

ψ(x, y) = max{ψ : x ≥ Aλ,ψy ≤ (f̂ (A) − ε)λ, λ ≥ 0, λ1=1} (28) 

The rest of the models are analogous. 
These models, however, involve many virtual points ((d + 2)m). In 

practice, we often substitute al1…lm 
by the original data to obtain a 

simpler model, based only on the set of points (xi, f̂ (xi)), i = 1, ..., n, 
which is computationally less expensive. The radial output-oriented 
model would then be calculated using the following model, with the 
remaining measures being analogous: 

ψ(x, y) = max{ψ : x ≥ Xλ,ψy ≤ f(X)λ, λ ≥ 0, λ1=1} (29)  

4. Computational experience 

In this section, we assess the quality of the SVF-Splines method by 
comparing it with other techniques. In particular, we perform a simu
lated experiment where we compare the performance of SVF-Splines 

WA(x, y) = max
{

ρ− s− + ρ+s+ ∈ R : (x − s− , y+s+) ∈ T̂SVF− SP, (s− , s+) ∈ Rm+s
+

}

= max{ρ− s− + ρ+s+ : x − s− ≥ Aλ, y+s+ ≤ f̂ (A)λ, λ ≥ 0, λ1 = 1, s− , s+ ≥ 0}
(27)   
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with first DEA and then CSVF using different production technologies 
with multiple inputs and a single output, within a simulated experience 
extracted from [27]. 

The details of the simulated production functions appear in Table 1. 
The simulated production functions are Cobb-Douglas functions, which 
are widely known in the economic literature. Each scenario uses a 
different number of inputs, and the exponent associated with each input 
indicates the level of theoretical marginal contribution of each variable 
to the output. The exponents of the inputs add up to 0.5 in every case, 
which is related to non-increasing returns to scale. The input values 
were obtained independently and identically distributed from Uni[1,10]. 
The observed output value is then calculated by multiplying by an extra 
inefficiency term e− u, with u ∼ exp(1/3). 

Each scenario was simulated with sample sizes n = 30,50,70,100. 
Each combination of scenario and sample size was then replicated 50 
times. The performance of each algorithm was measured using the 
standard Mean Squared Error (MSE) between the real, unobserved 
production frontier and the estimated production frontier over the 50 

trials, which is calculated as 
∑50

t=1
∑n

i=1
(
f
(
xt

i
)
− f̂

(
xt

i
))2

/50n, as well as 
the corresponding Bias, with formulation 

∑50
t=1

∑n
i=1|f

(
xt

i
)
−

f̂
(
xt

i
)
| /50n, where the superscript t corresponds to the trial considered. 

The experiments were performed in the Scientific Computation 
Cluster at the Miguel Hernandez University of Elche, which has a Su
permicro SYS-1029GQ-TRT node, with two Intel(R) Xeon(R) Gold 
6242R CPU @ 3.10 GHz processors, 80 cores and 768 GB of RAM. The 
algorithm was programmed in Python and CPLEX v20.1.0 was used for 
solving the optimization problems. 

4.1. Comparison between DEA and SVF-Splines 

We first compare the SVF-Splines methodology with standard DEA 
via the MSE and Bias scores obtained in the simulated scenarios. Table 2 
reports the comparison between these two methods with respect to both 
MSE and Bias for each combination of scenario and sample size. The first 
two columns indicate the scenario (which corresponds to the number of 
inputs) and the sample size. The next three columns refer to the MSE 
associated with the DEA and SVF-Splines estimators, and the relative 
difference between the two methods. The final three columns indicate 
the Bias of the techniques and their relative difference. 

Regarding the hyperparameters C, ε and d involved in SVF-Splines, 
we tune them using a five-fold cross validation procedure, which eval
uates which combination of values yields a better estimator, as 
measured by the out-of-sample MSE at each fold. The sets of possible 
values which we consider for the hyperparameters are C ∈ {0.001,0.01,
0.05,0.1,0.5,1,2,5,10,100}, ε ∈ {0,0.001,0.005,0.01,0.05,0.1,0.5,1}, 
whereas the number of partitions d along each input dimension depends 
on the number n of DMUs via d = 0.1⋅h⋅n, rounded to the nearest 
integer, with h = 1, ...,10. 

We observe that SVF-Splines outperforms DEA in every scenario, 
with improvements in MSE of up to 95 % and up to 77 % in the case of 
Bias. The relative improvements increase as the sample size increases 

(except in the scenario with a single input). As the dimensionality of the 
problem increases, the MSE and Bias of SVF-Splines grows slower than 
those of DEA. These results indicate that SVF-Splines is capable of esti
mating production functions closer to the unobserved theoretical pro
duction function than DEA, so that we can conclude that SVF-Splines 
seems not overfit to the data as much as DEA. In the case of DEA, this 
overfitting could be attributed to the principle of minimal extrapolation 
(see, for example, [14]). 

Finally, we point out that the new approach (SVF-splines) has 
demonstrated superior performance over the standard DEA approach in 
terms of MSE and bias within a finite-sample analysis (with n ≤ 200). 
However, claiming complete superiority would be premature. It is 
important to consider various properties, such as consistency, from a 
statistical perspective. While consistency has been extensively studied 
for the DEA estimator (see, for example, [20]), a similar analysis is 
lacking for SVF-splines. Consequently, our comparison with the stan
dard DEA model is confined to finite-sample analysis and our findings 
may be particularly relevant in scenarios with limited data sample sizes. 
Notably, a detailed analysis involving a greater number of DMUs and 
variables exceeds the scope of this paper but presents a potential avenue 
for future research. 

4.2. Comparison between SVF-Splines and CSVF 

In addition to standard DEA, we compare SVF-Splines with Con
vexified Support Vector Frontiers (CSVF). Table 3 shows those com
parisons which could be performed, which were not as extensive as in 
the previous comparison due to the high computational cost with CSVF, 
as described in Table 4. The structure of Table 3 is analogous to that of 
Table 2. The same set of potential hyperparameter values described in 
the previous section was used in the Cross-Validation process of both 
CSVF and SVF-Splines. 

We can observe in Table 3 that, while in the single-input case, CSVF 
performs slightly better than SVF-Splines, as soon as there are at least 
two inputs, SVF-Splines commits a smaller MSE and Bias than CSVF. This 
could be due to the fact that SVF-Splines directly estimates a convex 
production function while CSVF first estimates a stepwise function 
which is later convexified. 

We now discuss the computational workload associated with CSVF 
and SVF-Splines. Table 4 reports the average time spent by both SVF- 
Splines and CSVF in the overall Cross-Validation process (CV), as well 
as the time used to create the Best Model (BM) and the time spent to 
Solve the Best Model (SBM) on average in each configuration. We can 
observe how CSVF is a very computationally expensive method. In 
particular, CSVF requires a long time to execute as soon as there are at 
least 2 inputs, and it scales much slower as the number of inputs and/or 
DMUs increases. 

In particular, we can see how, already with only two inputs and 70 
DMUs, the computational time needed by CSVF is around 6.5 times that 
required by the new approach, and this ratio only increases as the 
number of DMUs and inputs increase. With the largest setting solved by 
CSVF, SVF-Splines can solve the problem over 70 times faster than CSVF. 

Table 1 
Data generating processes used.  

Scenario/ 
Num. Inputs 

Data Generating Process (f(x)⋅e− u) 

1 x0.5
1 ⋅e− u 

2 x0.4
1 ⋅x0.1

2 ⋅e− u 

3 x0.3
1 ⋅x0.1

2 ⋅x0.1
3 ⋅e− u 

4 x0.3
1 ⋅x0.1

2 ⋅x0.08
3 ⋅x0.02

4 ⋅e− u 

5 x0.3
1 ⋅x0.1

2 ⋅x0.08
3 ⋅x0.01

4 ⋅x0.01
5 ⋅e− u 

6 x0.3
1 ⋅x0.1

2 ⋅x0.08
3 ⋅x0.01

4 ⋅x0.006
5 ⋅x0.004

6 ⋅e− u 

9 x0.3
1 ⋅x0.1

2 ⋅x0.08
3 ⋅x0.005

4 ⋅x0.004
5 ⋅x0.001

6 ⋅x0.005
7 ⋅x0.004

8 ⋅x0.001
9 ⋅e− u 

12 x0.2
1 ⋅x0.075

2 ⋅x0.025
3 ⋅x0.05

4 ⋅x0.05
5 ⋅x0.08

6 ⋅x0.005
7 ⋅x0.004

8 ⋅x0.001
9 ⋅x0.005

10 ⋅x0.004
11 ⋅x0.001

12 ⋅e− u 

15 x0.15
1 ⋅x0.025

2 ⋅x0.025
3 ⋅x0.05

4 ⋅x0.025
5 ⋅x0.025

6 ⋅x0.05
7 ⋅x0.05

8 ⋅x0.08
9 ⋅x0.005

10 ⋅x0.004
11 ⋅x0.001

12 ⋅x0.005
13 ⋅x0.004

14 ⋅x0.001
15 ⋅e− u  
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Furthermore, the estimated MSE and Bias obtained are lower for the 
SVF-Splines than for the CSVF algorithm. 

Computational times used by SVF-Splines with more inputs and 
DMUs are reported in Fig. 3. It can be seen that, even in the most 
expensive case of 100 DMUs with 15 inputs, the computational load is 
lower than that of CSVF with 3 inputs and 30 DMUs. 

The computational burden can be observed to be more in that the 

creation of models, and in particular the Best Model (BM), which is 
much more computationally expensive for CSVF than for SVF-Splines. 
The Solution of the Best Model (SBM), despite the size of the models 
and how expensive they are to construct, is very fast in both cases. We 
can attribute this improvement of the new approach to the grid associ
ated to the transformation function, which for CSVF requires a number 
of parameters which is exponential in the number of inputs m (≈ mdm), 

Table 2 
Comparison between DEA and SVF-Splines according to MSE and Bias.  

Scenario Sample Size Mean Squared Error Bias 

DEA SVF-SP Improvement DEA SVF-SP Improvement 

1 30 0.02 0.016 17 % 0.104 0.097 7 % 
50 0.011 0.01 13 % 0.076 0.072 5 % 
70 0.007 0.006 11 % 0.059 0.057 4 % 
100 0.009 0.008 12 % 0.069 0.067 4 % 
200 0.000 0.000 3 % 0.01 0.009 2 % 

2 30 0.074 0.035 52 % 0.198 0.135 32 % 
50 0.048 0.019 60 % 0.16 0.102 37 % 
70 0.031 0.012 60 % 0.127 0.08 38 % 
100 0.024 0.01 61 % 0.109 0.069 38 % 
200 0.001 0.001 34 % 0.026 0.018 29 % 

3 30 0.132 0.05 62 % 0.285 0.174 40 % 
50 0.098 0.034 65 % 0.242 0.139 43 % 
70 0.07 0.022 70 % 0.203 0.105 49 % 
100 0.056 0.013 76 % 0.177 0.083 54 % 
200 0.003 0.001 63 % 0.045 0.023 49 % 

4 30 0.2 0.064 67 % 0.342 0.191 44 % 
50 0.156 0.042 74 % 0.3 0.149 51 % 
70 0.114 0.025 78 % 0.252 0.119 53 % 
100 0.095 0.018 81 % 0.231 0.096 59 % 
200 0.006 0.001 79 % 0.060 0.024 60 % 

5 30 0.312 0.121 61 % 0.468 0.292 38 % 
50 0.239 0.063 74 % 0.397 0.209 48 % 
70 0.225 0.058 74 % 0.387 0.2 49 % 
100 0.176 0.037 78 % 0.343 0.163 52 % 
200 0.009 0.000 82 % 0.059 0.022 62 % 

6 30 0.313 0.098 68 % 0.465 0.256 45 % 
50 0.272 0.073 73 % 0.424 0.211 51 % 
70 0.227 0.05 78 % 0.385 0.17 56 % 
100 0.2 0.037 82 % 0.359 0.143 60 % 
200 0.012 0.001 90 % 0.084 0.026 69 % 

9 30 0.392 0.129 68 % 0.52 0.286 45 % 
50 0.368 0.095 74 % 0.501 0.24 52 % 
70 0.337 0.067 80 % 0.475 0.203 57 % 
100 0.318 0.052 84 % 0.46 0.173 62 % 
200 0.023 0.001 94 % 0.114 0.028 76 % 

12 30 0.413 0.135 68 % 0.534 0.296 45 % 
50 0.416 0.107 74 % 0.539 0.257 52 % 
70 0.396 0.084 79 % 0.526 0.229 57 % 
100 0.378 0.064 83 % 0.515 0.2 61 % 
200 0.030 0.002 94 % 0.135 0.031 77 % 

15 30 0.439 0.165 63 % 0.566 0.34 40 % 
50 0.421 0.131 69 % 0.543 0.295 46 % 
70 0.427 0.093 78 % 0.55 0.245 56 % 
100 0.408 0.078 81 % 0.537 0.221 59 % 
200 0.034 0.002 95 % 0.147 0.033 77 %  

Table 3 
Comparison between SVF-Splines and CSVF according to MSE and Bias.  

Scenario Sample Size Mean Squared Error Bias 

SVF-SP CSVF Improvement SVF-SP CSVF Improvement 

1 30 0.016 0.016 0 % 0.097 0.09 − 8 % 
50 0.01 0.008 − 25 % 0.072 0.066 − 9 % 
70 0.006 0.005 − 20 % 0.057 0.053 − 8 % 
100 0.008 0.008 0 % 0.067 0.064 − 5 % 

2 30 0.035 0.05 30 % 0.135 0.164 18 % 
50 0.019 0.03 37 % 0.102 0.125 18 % 
70 0.012 0.021 43 % 0.08 0.105 24 % 
100 0.01 0.017 41 % 0.069 0.087 21 % 

3 30 0.005 0.009 44 % 0.089 0.077 13 % 
50 0.034 0.058 41 % 0.139 0.192 28 %  
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as well as corresponding restrictions. On the other hand, the trans
formation function related to SVF-Splines has a linear number of pa
rameters in the inputs (≈ m(d+ 3)). 

From this computational experiment, we can conclude that SVF- 
Splines is a method which reduces the overfitting present in DEA, 
obtaining estimations closer to the unobserved efficient frontier. It 
furthermore improves upon the results obtained by CSVF, with much 
lower computational time required and lower MSE and Bias as soon as 
the number of inputs is at least 2. 

5. Empirical illustration 

In this section, we present an illustration of the results that can be 
obtained by SVF-Splines in an empirical database from the literature. 

This database consists of 44 regional tax offices in Spain, which oversee 
tax collection in almost all Spanish provinces. The data is from 2011, 
and the database was used in [3]. We calculate the efficiency scores 
using the efficiency measures introduced above (Section 3.4), that is, the 
output and input-oriented radial models (24), (25), the directional dis
tance function (26) with directional vector g = (x,y), and the Weighted 
Additive (27) with the weights corresponding to the Range Adjusted 
Measure, that is, ρ− (j) = 1

(m+s)R−
j 

and ρ+(r) = 1
(m+s)R+

r
, where R−

j is the range 

of input j and R+
r is the range of values of output r. 

The dataset used contains three variables considered as inputs, and 
two outputs. There are two inputs related to labour: the number of tax 
inspectors and specialists (x1) and the number of workers in the rest of 
the workforce (x2). We also consider as an input the number of suc
cessful complaints by taxpayers against the tax authority (x3). This 
variable indicates an output that a manager should desire to minimize, 
sometimes called a bad output in the literature. Thus, it is considered as 
an input in the model, as in [19,25]. The two outputs considered 
correspond to the two main taxes collected by the tax offices: the in
heritance and gift tax (y1) and the real estate transfer tax settlements 
processed (y2). 

The data was normalized so that the values of the variables lie be
tween 0 and 1 by dividing the values of each variable by the maximum 
attained value. This does not change the values of the measures of ef
ficiency, which are all units-invariant. Table 5 shows descriptive sta
tistics of the dataset before normalization. 

The sets of potential hyperparameter values considered in the five- 

Table 4 
Execution time of the SVF and SVF-Splines algorithms.  

Scenario Sample Size SVF-SP CSVF 

CV BM SBM CV BM SBM 

1 30 161.02 0.02 0.0 137.68 0.04 0.0 
50 196.22 0.0 0.02 157.02 0.06 0.0 
70 242.26 0.12 0.04 195.46 0.2 0.0 
100 325.68 0.06 0.02 262.3 0.24 0.0 

2 30 188.68 0.08 0.0 324.18 0.4 0.0 
50 251.7 0.06 0.02 925.4 2.12 0.0 
70 335.52 0.1 0.06 2166.32 5.82 0.04 
100 489.0 0.14 0.02 5401.16 13.74 0.06 

3 30 208.66 0.04 0.0 4697.6 7.64 0.06 
50 299.28 0.06 0.0 21,764.54 46.02 0.18  

Fig. 3. SVF-Splines runtime according to sample size and number of inputs.  

Table 5 
Descriptive statistics of the Spanish tax offices dataset.   

x1 x2 x3 y1 y2 

Average 32 91 57.6 10.45 8.91 
Median 23 70 22.8 7.39 6.59 
Std. Dev. 30 74 88.3 9.49 9.60 
Max. 191 368 420.2 49.27 60.02 
90 % 60 194 176.7 20.65 18.97 
75 % 39 109 63.7 10.71 10.18 
25 % 17 43 8.9 5.30 3.62 
10 % 11 32 5.0 3.88 2.14 
Min. 7 21 0.8 2.51 1.48  
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fold cross-validation process were: C ∈ {0.001,0.01,0.05,0.1, 0.5,1, 2,
5, 10}, ε ∈ {0,0.001,0.005,0.01,0.05,0.1,0.2}. We remark that, since the 
values of each variable were normalized to lie between 0 and 1, a margin 
of 0.1 corresponds 10 % of the maximum value of each output variable, 
i.e., already quite a large margin.1 The value of d was chosen within d =
0.1⋅h⋅n for h = 1, ...,20, rounded to the closest integer. In other words, d 
= {4, 9, 13, 18, ..., 70, 75, 79, 84, 88}. The best hyperparameter combi
nation was chosen as C = 1.0, ε = 0.05 and d = 4. This indicates an 
ε-insensitive margin of 5 % of the maximum along each output, with the 
input space being divided into (d + 2)m

= 63 = 216 cells via m(d +3) =
3⋅7 = 21 weight hyperparameters. 

Table 6 then presents the efficiencies estimated by DEA and SVF- 
Splines with respect to each of the measures of efficiency, as well as 
whether each DMU is considered ε-insensitive efficient with respect to 
the estimated production technology. The final three rows of Table 6 
indicate the average efficiency measured by each method, the corre
sponding standard deviation, and the number of DMUs considered 
efficient with respect to each algorithm and measure. We observe that 
SVF-Splines consistently estimates higher inefficiencies, indicating a 
frontier which fits the data less closely than that of DEA, which suffers 
from overfitting.2 We observe that, while DEA always considers 19 units 
as efficient regardless of the measure, SVF-Splines considers 7 DMUs as 
efficient in the case of the Radial Input measure and 9 units when the 
Directional Distance Function is applied. Moreover, under the SVF- 
Splines model, 6 DMUs are considered efficient with respect to the 
Radial Output measure, and no DMUs are considered fully efficient with 

Table 6 
Estimated efficiencies in the Spanish tax offices dataset.  

DMU Radial Output Radial Input Weighted Additive (RAM) Directional Distance Function 

DEA SVF- 
SP 

ε-insensitive 
efficient 

DEA SVF- 
SP 

ε-insensitive  
efficient 

DEA SVF- 
SP 

ε-insensitive  
efficient 

DEA SVF- 
SP 

ε-insensitive  
efficient 

ALMERIA 1.4075 1.5825 No 0.6966 0.5892 No 0.1046 0.1118 No 0.4075 0.4512 No 
CADIZ 1.1414 1.2755 No 0.8866 0.7504 No 0.0649 0.0824 No 0.1297 0.2305 No 
CORDOBA 1.5738 1.9151 No 0.4969 0.4468 No 0.0692 0.0745 No 0.3691 0.5684 No 
GRANADA 1.2926 1.4025 No 0.7888 0.6659 No 0.0619 0.0716 No 0.2899 0.3494 No 
HUELVA 1.4185 1.5963 No 0.7937 0.5286 No 0.0355 0.0416 No 0.4185 0.5416 No 
JAEN 1.3502 1.6406 No 0.7441 0.5945 No 0.0480 0.0540 No 0.3217 0.4803 No 
MALAGA 1.0000 1.0935 Yes 1.0000 0.9022 Yes 0.0000 0.0625 Yes 0.0000 0.0892 Yes 
SEVILLA 1.1930 1.2155 No 0.8076 0.8012 No 0.0523 0.0808 No 0.1402 0.1947 No 
HUESCA 1.0000 1.6517 Yes 1.0000 0.9511 Yes 0.0000 0.0202 Yes 0.0000 0.4394 Yes 
TERUEL 1.0000 1.2668 Yes 1.0000 1.0000 Yes 0.0000 0.0141 Yes 0.0000 0.0000 Yes 
ZARAGOZA 1.0000 1.0666 Yes 1.0000 0.9341 Yes 0.0000 0.0233 Yes 0.0000 0.0401 Yes 
OVIEDO 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.0247 Yes 0.0000 0.0000 Yes 
BALEARES 1.2670 1.8781 No 0.8114 0.5058 No 0.0581 0.0625 No 0.2285 0.3861 No 
CANTABRIA 1.2319 1.3858 Yes 0.8058 0.6540 Yes 0.0243 0.0293 Yes 0.2049 0.3531 Yes 
ALBACETE 1.2181 1.3919 Yes 0.8598 0.6805 Yes 0.0135 0.0218 Yes 0.1867 0.3651 Yes 
CIUDAD REAL 1.0000 1.0000 Yes 1.0000 0.9996 Yes 0.0000 0.0032 Yes 0.0000 0.0000 Yes 
CUENCA 1.2651 1.9234 No 0.8621 0.6563 No 0.0178 0.0307 No 0.2398 0.6550 No 
GUADALAJARA 1.0364 1.7132 Yes 0.9778 0.6335 Yes 0.0083 0.0233 Yes 0.0345 0.5594 Yes 
TOLEDO 1.1788 1.2682 Yes 0.7632 0.7387 Yes 0.0211 0.0260 Yes 0.1512 0.2588 Yes 
AVILA 1.0000 1.2552 Yes 1.0000 1.0000 Yes 0.0000 0.0152 Yes 0.0000 0.0000 Yes 
BURGOS 1.1882 1.2954 Yes 0.8444 0.7433 Yes 0.0172 0.0225 Yes 0.1672 0.2772 Yes 
LEÓN 1.0000 1.0067 Yes 1.0000 0.9897 Yes 0.0000 0.0151 Yes 0.0000 0.0058 Yes 
PALENCIA 1.1641 1.3862 Yes 0.8632 0.8000 Yes 0.0084 0.0205 Yes 0.1544 0.3670 Yes 
SALAMANCA 1.0139 1.0910 Yes 0.9875 0.9035 Yes 0.0014 0.0142 Yes 0.0135 0.0841 Yes 
SEGOVIA 1.2139 1.4089 Yes 0.8711 0.7071 Yes 0.0093 0.0228 Yes 0.1682 0.3802 Yes 
SORIA 1.0000 1.8165 Yes 1.0000 1.0000 Yes 0.0000 0.0203 Yes 0.0000 0.0000 Yes 
VALLADOLID 1.3574 1.5670 No 0.7649 0.6038 No 0.0305 0.0360 No 0.3362 0.4688 No 
ZAMORA 1.0000 1.0805 Yes 1.0000 0.9086 Yes 0.0000 0.0162 Yes 0.0000 0.0746 Yes 
BARCELONA 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.1021 Yes 0.0000 0.0000 Yes 
GIRONA 1.0000 1.1410 Yes 1.0000 0.8714 Yes 0.0000 0.0286 Yes 0.0000 0.0802 Yes 
LLEIDA 1.1634 1.2723 Yes 0.8622 0.7531 Yes 0.0160 0.0240 Yes 0.1457 0.2472 Yes 
TARRAGONA 1.0000 1.1972 Yes 1.0000 0.7872 Yes 0.0000 0.0238 Yes 0.0000 0.1921 Yes 
BADAJOZ 1.6460 1.7975 No 0.6317 0.4785 No 0.0699 0.0750 No 0.5002 0.7027 No 
CACERES 1.4216 1.6921 No 0.7855 0.5000 No 0.0245 0.0321 No 0.3863 0.5989 No 
A CORUÑA 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.0046 Yes 0.0000 0.0000 Yes 
LUGO 1.0000 1.0236 Yes 1.0000 0.9710 Yes 0.0000 0.0147 Yes 0.0000 0.0206 Yes 
OURENSE 2.0479 2.1611 No 0.5134 0.4196 No 0.0469 0.0514 No 0.6079 0.6995 No 
PONTEVEDRA 1.2544 1.3647 No 0.7844 0.7178 No 0.0545 0.0672 No 0.2519 0.2821 No 
LA RIOJA 1.0000 1.3953 Yes 1.0000 0.7593 Yes 0.0000 0.0269 Yes 0.0000 0.3182 Yes 
MADRID 1.0000 1.0000 Yes 1.0000 1.0000 Yes 0.0000 0.0105 Yes 0.0000 0.0000 Yes 
MURCIA 1.2786 1.3135 No 0.7771 0.7422 No 0.1426 0.1808 No 0.2496 0.2610 No 
ALICANTE 1.0000 1.2054 No 1.0000 0.8316 No 0.0000 0.1235 No 0.0000 0.1379 No 
CASTELLÓN 1.6437 1.8878 No 0.6331 0.5140 No 0.0584 0.0637 No 0.5191 0.6429 No 
VALENCIA 1.0000 1.0000 Yes 1.0000 0.9993 Yes 0.0000 0.0285 Yes 0.0000 0.0000 Yes 
Average 1.1811 1.3779  0.8776 0.7735  0.0241 0.0432  0.1505 0.2683  
Std. dev. 0.2304 0.3143  0.1398 0.1829  0.0326 0.0362  0.1735 0.2279  
# eff. Units 19 6 27 19 7 27 19 0 27 19 9 27  

1 Support Vector Regression (SVR), foundational to the SVF-splines approach, 
depends on hyperparameters, including the margin. This margin defines the 
error-free region around the regression line and is crucial in SVR models. 
Tuning it involves considering various values, a non-trivial task. Normalizing 
data allows reinterpretation of margin values, with a margin of z corresponding 
to 100⋅z% of the maximum output value. For the empirical case, we chose a 
margin of 0.2, which seems large enough. 

2 In all cases, a higher value of the measure indicates a greater level of in
efficiency, with the exception of the Radial Input measure, where the inter
pretation is reversed: higher values denote better technical efficiency. 
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respect to the Range Adjusted Measure (WA), which is capable of 
detecting additional sources of inefficiencies along any variables, and 
projects to the strongly efficient frontier. 

Regarding ε-insensitive technical efficiency, 27 DMUs are considered 
efficient with this margin of ε = 0.05. This can be seen as an indication 
that the remaining 17 DMUs can be considered very far from efficient, 
whereas those 27 which are within the margin can be considered to be 
close to efficient with respect to this more robust notion of efficiency, 
even if they are not completely efficient. 

Additionally, we use the Li test adapted to the production context 
[33], based on the Li test [22], as a tool to compare the vectors of effi
ciency scores estimated by each method with respect to the same mea
sures of efficiency. This is a nonparametric statistical test for the 
similarity of two distributions of technical efficiency scores. We remark 
that the efficiencies cannot be compared between different measures, 
since each of them has different properties, whether in orientation, 
range of potential values, and other properties. Hence, we compare the 
efficiencies obtained, always with respect to the same measure, by both 
DEA and SVF-Splines. 

The version of the Li test that we use requires that the efficiencies are 
in the output orientation. That is, that efficient units attain the value 1, 
and larger values indicate higher inefficiencies, without an upper bound, 
which is the same orientation as the output-oriented radial measure. 
Therefore, we transform the other measures appropriately. For the 
input-oriented measure, we transform it to its reciprocal 1 /x. For the 
DDF and RAM, which are bounded measures of inefficiency, the corre
sponding transformation is 1/(1 − x). This is because, with the choices of 

weights used, they are inefficiency measures bounded between 0 and 1, 
with efficient units attaining 0. The corresponding measures of in
efficiency are 1 − x, but these are oriented as an input measure. In order 
to orient them in the output sense as required for the Li Test, we 
therefore calculate their reciprocal. 

We present in Fig. 4 the kernel density distributions comparing the 
efficiency scores estimated by DEA and SVF-Splines. We again observe 
that SVF-Splines estimates higher average inefficiencies. The Li test 
yields evidence that the distributions are indeed statistically signifi
cantly different according to this measure in the radial measures and 
RAM. Regarding the DDF, the p-value in question was 0.079, which does 
not allow for this conclusion at a significance level of 0.05, but would do 
so at the significance value of 0.10 also recommended by Simar and 
Zelenyuk. 

Therefore, we can observe in this empirical illustration that SVF- 
Splines shows higher discriminatory power than DEA by considering 
fewer units as fully efficient, estimating higher average inefficiencies 
which show statistically significant differences compared to DEA. 
Furthermore, SVF-Splines adds an additional layer of classification in 
the difference between the estimated efficiencies and the ε-insensitive 
efficient units. This notion of ε-insensitivity can be seen as a more robust 
region of efficiency, which allows to label some DMUs as being highly 
inefficient. 

6. Conclusions and future work 

Traditional non-parametric methods for the measurement of 

Fig. 4. Kernel density plots for different measures comparing efficiencies estimated by DEA and SVF-Splines.  
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efficiency such as FDH and DEA have many interesting properties, but 
have received criticism regarding their performance, such as that they 
suffer from a problem of overfitting to the observed data (see, for 
example, [14] or [35]), which can be attributed to the principle of 
minimal extrapolation and may result in lack of generalization capa
bility (low inferential power). An area of recent interest in the mea
surement of efficiency is the use of machine-learning methodologies to 
improve the estimators by overcoming these overfitting issues and 
provide them with generalization capability and robustness. 

One approach of particular interest is Support Vector Frontiers (SVF) 
([36], 2022), which adapts Support Vector Regression to estimate 
stepwise production technologies satisfying the axioms of Free Disposal 
Hull except for minimal extrapolation. These production technologies 
can then be convexified to obtain convex production technologies, along 
the lines of DEA. However, the SVF approach presents some limitations 
regarding its computational time, as well as its two-stage estimation, 
where first a stepwise production frontier is calculated, which is later 
convexified. 

In this paper, we have proposed an extension of Support Vector 
Frontiers by using a transformation function involving linear splines, 
that is, with a transformation function involving kernels which generate 
splines of order 1. The transformation function in SVF could be 
considered as a splines transformation of order 0. This extension, which 
we denote by SVF-Splines, allows for the direct estimation of convex, 
piecewise linear, DEA-type, production technologies, in both a single 
and multi-output context, with lower computational costs. This paper 
defines the SVF-Splines model and characterizes its corresponding pro
duction technology. The properties satisfied by DEA, except for minimal 
extrapolation, are established for the production possibility set esti
mated by SVF-Splines in a multi-input multi-output context. These 
properties are envelopment of the observed data, free disposability of 
inputs and outputs and convexity. Furthermore, the estimated set is 
identified with a DEA estimator defined on a set of virtual points. Sub
sequently, we have shown how to estimate technical inefficiency in the 
SVF-Splines context for a variety of standard measures of efficiency from 
the literature. 

This contribution therefore proposes a significant improvement to 
the SVF estimator by using a different transformation function under the 
assumption of convexity. The change of kernel results in a different set of 
restrictions being used to guarantee the satisfaction of the microeco
nomic postulates. 

The validity of the proposed approach is evaluated by a simulated 
experiment where it was compared with DEA and CSVF (the convexified 
version of the original SVF by Valero-Carreras, 2021, 2022). The results 
from the simulation show that SVF-Splines can estimate production 
technologies closer to the unobserved theoretical production frontier 
than DEA and SVF-Splines, as measured using MSE and Bias statistics. 
Furthermore, the computational time required by SVF-Splines is much 
lower than that of CSVF, which must create and solve models with a 
number of variables and restrictions which is exponential in the number 
of inputs, whereas SVF-Splines only has linearly many such variables 
and restrictions. Regarding the results, SVF-Splines obtained a similar 
performance to DEA and CSVF in the single-input single-output scenario. 
However, when the number of inputs is at least 2, SVF-Splines obtained 
improvements between 52 % and 95 % in MSE and of 32 % and 77 % in 
Bias with respect to DEA, and between 30 % and 44 % in MSE and be
tween 18 % and 28 % in Bias for SVF-Splines when compared to CSVF. 
Regarding the comparison with CSVF, only those scenarios with at most 
3 inputs and 50 DMUs were solved, since in larger scenarios the 
computation time required by CVSF becomes impracticable. 

Furthermore, an empirical example is provided to illustrate the re
sults that can be obtained using SVF-Splines. The database under study 
consists of 44 regional tax offices in Spain. From this example, it can be 
observed how SVF-Splines classifies a fewer DMUs as efficient than DEA 
and how it estimates overall smaller average efficiencies, thus identi
fying more sources of inefficiency. Efficiency scores are calculated with 

respect to the radial output and input measures, the Directional Distance 
Function, and the Weighted Additive model, to illustrate the variety of 
measures available in the literature of nonparametric efficiency esti
mation. In addition, comparisons between the estimated vectors of ef
ficiencies with respect to the same measure show significant differences 
with respect to efficiency measures between DEA and SVF-Splines. 
Additionally, when the more robust concept of epsilon-insensitive effi
ciency is considered, the method classifies a larger number of DMUs as 
efficient, which can be interpreted as evidence pointing towards that 
those that are still labelled as inefficient through the new approach can 
be considered to be very far from technical efficiency. 

Regarding the possible utilization by a decision-maker, while he may 
still be interested in a quick estimation and does not care about over
fitting to the available data, DEA is a valid option. However, if the goal is 
to obtain more robust results and to perform inference, SVF-Splines is an 
option to consider. Regarding the limitations of the method, SVF-Splines 
requires a cross-validation procedure which involves large grid of values 
to establish three hyperparameters, which results in some computa
tional load. It is still slower than DEA, which involves only linear pro
gramming. This could be further improved by narrowing down the 
potential ranges of values. The determination of knots may also be 
problematic and could be performed in other ways (for example, a non 
equi-distance split of each input dimension). 

We finally mention various potential lines of future work, such as the 
use of estimators involving higher order splines (quadratic, cubic, etc.). 
Other types of transformation functions such as Radial Basis Functions 
or Gaussian kernels could also be used. We observe that the restrictions 
on the parameters which ensure that the production axioms hold are not 
the same as in SVF, and more information about which properties of SVR 
allow the satisfaction of the properties may be interesting, regarding 
other potential kernels and their associated constraints. In this paper we 
have focused our attention on measuring the efficiency of units in a 
single dataset, and the proposed algorithm could be adapted to work 
with panel data, and the study of whether the differences in efficiency 
arise from its various sources (efficiency change, scale efficiency change, 
technical change). Further validation using more real databases in 
different contexts would always be useful. Other robustness increasing 
methods such as relaxed support vector regression [30] or based on the 
directional distance function [4] could also be considered. Additional 
future research could entail comparative analyses among DEA-related 
methods, such as Supper-Efficiency DEA [2] and SBM (Slack-Based 
Measure) (see [34]), and the new approach (SVF-Splines) to elucidate 
their relative advantages and limitations in different contexts. Addi
tionally, further research is warranted to delve into the ‘black-box’ 
mechanism underlying support vector-based approaches for construct
ing production frontiers. By addressing these areas, we aim to enhance 
our understanding of efficiency measurement techniques and contribute 
to the advancement of knowledge in this field. 
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