Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38193

On L∞-estimates and the structure of the global attractor for weak solutions of reaction-diffusion equations


no-thumbnail
View/Open:

 On L infty -estimates and the structure of the global attractor for weak solutions of reaction-diffusion equations.pdf



454,09 kB
Adobe PDF
Share:

This resource is restricted

Title:
On L∞-estimates and the structure of the global attractor for weak solutions of reaction-diffusion equations
Authors:
Caballero-Toro, Rubén
Kalita, Piotr
Valero, José
Editor:
American Institute of Mathematical Sciences
Department:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Issue Date:
2025-03
URI:
https://hdl.handle.net/11000/38193
Abstract:
In this paper, we study the structure of the global attractor for weak and regular solutions of a problem governed by a scalar semilinear reactiondiffusion equation with a non-regular nonlinearity, such that uniqueness of solutions can fail to happen. First, using the Moser–Alikakos iterations we obtain the estimates of the weak solutions in the space L∞(Ω). After that, using these estimates we improve the existing results on the structure of the attractor. Finally, estimates of the Hausdorff and fractal dimension of the attractor are obtained.
Keywords/Subjects:
Reaction-diffusion equations
Set-valued dynamical system
Global attractor
Unstable manifolds
Asymptotic behavior
Knowledge area:
CDU: Ciencias puras y naturales: Matemáticas
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
http://dx.doi.org/10.3934/cpaa.2024093
Published in:
Communications on Pure and Applied Analysis, Vol. 24, Nº 3 (2025)
Appears in Collections:
Artículos Estadística, Matemáticas e Informática



Creative Commons ???jsp.display-item.text9???