Título : On L∞-estimates and the structure of the global attractor for weak solutions of reaction-diffusion equations |
Autor : Caballero-Toro, Rubén Kalita, Piotr Valero, José |
Editor : American Institute of Mathematical Sciences |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2025-03 |
URI : https://hdl.handle.net/11000/38193 |
Resumen :
In this paper, we study the structure of the global attractor for
weak and regular solutions of a problem governed by a scalar semilinear reactiondiffusion
equation with a non-regular nonlinearity, such that uniqueness of solutions
can fail to happen. First, using the Moser–Alikakos iterations we obtain
the estimates of the weak solutions in the space L∞(Ω). After that, using these
estimates we improve the existing results on the structure of the attractor. Finally,
estimates of the Hausdorff and fractal dimension of the attractor are
obtained.
|
Palabras clave/Materias: Reaction-diffusion equations Set-valued dynamical system Global attractor Unstable manifolds Asymptotic behavior |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : http://dx.doi.org/10.3934/cpaa.2024093 |
Publicado en: Communications on Pure and Applied Analysis, Vol. 24, Nº 3 (2025) |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|