Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38106
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGonzález Delicado, Juan Jesús-
dc.contributor.authorGozálvez Sempere, Javier-
dc.contributor.authorMena Oreja, Jesús-
dc.contributor.authorSepulcre Ribes, Miguel-
dc.contributor.authorColl Perales, Baldomero-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-11-11T10:30:59Z-
dc.date.available2025-11-11T10:30:59Z-
dc.date.created2021-
dc.identifier.citationIEEE Accesses_ES
dc.identifier.issn2169-3536-
dc.identifier.urihttps://hdl.handle.net/11000/38106-
dc.description.abstractThe design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and microscopic levels under large-scale and complex scenarios. The generation of accurate scenarios and synthetic traces requires a precise modelling approach, and the possibility to validate them against real-world measurements that are generally not available for large-scale scenarios. This limits the open availability of realistic and large-scale traffic simulation scenarios. The purpose of this paper is to present a large-scale and high-accuracy traffic simulation scenario. The scenario has been implemented over the open-source SUMO traffic simulator and is openly released to the community. The scenario accurately models the traffic flow, the traffic speed and the road’s occupancy for 9 full days of traffic over a 97 km freeway section. The scenario models mixed traffic with light and heavy vehicles. The simulation scenario has been calibrated using a unique dataset provided by the Spanish road authority and a novel learning-based and iterative traffic demand calibration technique for SUMO. This technique, referred to as Clone Feedback, is proposed for the first time in this paper and does not require a pre-calibration to generate realistic traffic demand. Clone Feedback can generate calibrated mixed traffic (light and heavy vehicles) using as input only traffic flow measurements. The results obtained show that Clone Feedback outperforms two reference techniques for calibrating the traffic demand in SUMO.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.relation.ispartofseriesVol. 9es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecttraffic controles_ES
dc.subjectroadses_ES
dc.subjectcalibrationes_ES
dc.subjectmicroscopyes_ES
dc.subjecttestinges_ES
dc.subjectvehicle-to-everythinges_ES
dc.subjectbiological system modelinges_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicacioneses_ES
dc.titleAlicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMOes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2021.3126269es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


thumbnail_pdf
Ver/Abrir:
 Alicante-Murcia_Freeway_Scenario_A_High-Accuracy_and_Large-Scale_Traffic_Simulation_Scenario_Generated_Using.pdf

2,04 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.