Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/37192
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLozano-Paredes, Dafne-
dc.contributor.authorBote-Curiel, Luis-
dc.contributor.authorSabater-Molina, Maria-
dc.contributor.authorBielza, Concha-
dc.contributor.authorGimeno Blanes, Juan Ramón-
dc.contributor.authorMuñoz-Romero, Sergio-
dc.contributor.authorGimeno Blanes, Francisco Javier-
dc.contributor.authorLarrañaga, Pedro-
dc.contributor.authorRojo-Álvarez, José Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-09-03T09:52:32Z-
dc.date.available2025-09-03T09:52:32Z-
dc.date.created2025-
dc.identifier.citationIEEE Transactions on Computational Biology and Bioinformaticses_ES
dc.identifier.issn1557-9964-
dc.identifier.issn1545-5963-
dc.identifier.urihttps://hdl.handle.net/11000/37192-
dc.description.abstractHypertrophic cardiomyopathy is known to have strong genetic foundations. However, only some studies have addressed the complex network of co-expressed genes and variants that modify the phenotype. Machine learning methods offer robust information discovery when dealing with high-dimensional datasets. We aimed to perform relevance and interaction analysis on genetic variants from hypertrophic cardiomyopathy patients using diverse machine learning techniques, with the following stages: (a) Statistical univariate techniques (with various p-value adjustment methods) identified relevant variants; (b) Linear classifiers (support vector machines, Fisher discriminant analysis) provided combined relevance based on feature weights; (c) Informative variable identifier method and Bayesian networks explained inter-variant relationships; (d) Manifold learning of low-dimensional latent spaces gave interpretable representations of groups; (e) Linkage disequilibrium matrices and frequency tables discovered associations between variants. We analyzed 61 patients and 67 controls with genetic information comprising 216 variants from a genetic panel of 15 genes. Across all methodologies, ten variants were consistently identified as significant, with 22 total variants significant in at least three out of five methods. Machine learning has been found to detect disease-associated variants, including pathogenic founder variants (11:47357494, 11:47360070, 11:47372137). This methodology allows for identifying potential disease modulators while accounting for relevance and interactions among variants.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.ispartofseries22es_ES
dc.relation.ispartofseries4es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBioinformaticses_ES
dc.subjectEmbeddingses_ES
dc.subjectGenetic variantses_ES
dc.subjectHypertrophic cardiomyopathyes_ES
dc.subjectMachine learninges_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleDiscovering Genetic Variants in Hypertrophic Cardiomyopathy With Multiple Machine Learning Techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/TCBBIO.2025.3572833es_ES
Appears in Collections:
Artículos Ingeniería Comunicaciones


Thumbnail

View/Open:
 Discovering_Genetic_Variants_in_Hypertrophic_Cardiomyopathy_With_Multiple_Machine_Learning_Techniques.pdf

4,23 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???