Abstract:
Este TFG explora el uso de algoritmos de Machine Learning para predecir el rendimiento estudiantil, permitiendo identificar a estudiantes en riesgo. A través de modelos como Randomforest, J48, Logisticregression y Cart, se evalúa su precisión en dos entornos: uno básico y otro optimizado con ia para ajustar los parámetros y mejorar la exactitud. Los resultados destacan cómo esta combinación de enfoques permite mejorar la intervención educativa, facilitando decisiones informadas y transparentes para apoyar a los estudiantes en riesgo académico.