Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35400
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSerrano Rodríguez, Juan Miguel-
dc.contributor.authorNavarro Cobacho, Pedro-
dc.contributor.authorRuiz Ramírez, Javier-
dc.contributor.authorPalenzuela, Patricia-
dc.contributor.authorLucas Miralles, Manuel-
dc.contributor.authorRoca, Lidia-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2025-01-28T13:46:34Z-
dc.date.available2025-01-28T13:46:34Z-
dc.date.created2024-
dc.identifier.citationEnergyes_ES
dc.identifier.issn1873-6785-
dc.identifier.issn0360-5442-
dc.identifier.urihttps://hdl.handle.net/11000/35400-
dc.description.abstractThe efficiency of Concentrated Solar Power (CSP) plants strongly depends on steam condensation temperatures. Current cooling systems, either wet (water-cooled) or dry (air-cooled), present trade-offs. Wet cooling towers (WCT) optimize performance but raise concerns due to substantial water usage, especially in water-scarce prone locations of CSP plants. Dry cooling conserves water but sacrifices efficiency, specially during high ambient temperatures, coinciding with peak electricity demand. A potential compromise is a combined cooling system, integrating wet and dry methods, offering lower water consumption, improved efficiency and flexibility. Incorporating such systems into CSP plants is of considerable interest, aiming to optimize operations under diverse conditions. This research focuses on the first step towards this goal; developing static models for WCTs. Two approaches, Poppe and Artificial Neural Networks (ANN), are developed and thoroughly compared in terms of prediction capabilities, experimental and instrumentation requirements, sensitivity analysis, execution time, implementation and scalability. Both approaches have proven to be reliable, with Poppe providing better results, based on MAPE, for the outlet temperature and water consumption (0.87 % and 3.74 %, respectively) compared to a cascade-forward ANN model (1.82 % and 5.21 %, respectively). However, for the target application, the better execution time favours the use of ANNs.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent15es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries305es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectConcentrated solar poweres_ES
dc.subjectCooling systemes_ES
dc.subjectModellinges_ES
dc.subjectNeural networkses_ES
dc.subjectSensitivity analysises_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinariaes_ES
dc.titleWet cooling tower performance prediction in CSP plants: A comparison between artificial neural networks and Poppe’s modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.energy.2024.131844es_ES
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía


Vista previa

Ver/Abrir:
 2024 Energy 303.pdf

2,98 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.