Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35050
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMoragues, Raul-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorEsteve, Miriam-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-20T18:55:17Z-
dc.date.available2025-01-20T18:55:17Z-
dc.date.created2023-
dc.identifier.citationMathematicses_ES
dc.identifier.issn2227-7390-
dc.identifier.urihttps://hdl.handle.net/11000/35050-
dc.description.abstractAbstract: In this paper, we propose and compare new methodologies for ranking the importance of variables in productive processes via an adaptation of OneClass Support Vector Machines. In particular, we adapt two methodologies inspired by the machine learning literature: one involving the random shuffling of values of a variable and another one using the objective value of the dual formulation of the model. Additionally, we motivate the use of these type of algorithms in the production context and compare their performance via a computational experiment. We observe that the methodology based on shuffling the values of a variable outperforms the methodology based on the dual formulation. We observe that the shuffling-based methodology correctly ranks the variables in 94% of the scenarios with one relevant input and one irrelevant input. Moreover, it correctly ranks each variable in at least 65% of replications of a scenario with three relevant inputs and one irrelevant input.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent24es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofseries11es_ES
dc.relation.ispartofseries11es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata envelopment analysises_ES
dc.subjectfeature rankinges_ES
dc.subjectmodel specificationes_ES
dc.subjectunsupervised machine learninges_ES
dc.subjecttechnical efficiencyes_ES
dc.subjectoverfittinges_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleRanking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/math11112590es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 mathematics-11-02590-v2-1.pdf

481,38 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.