Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34948
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGonzález Espinosa, Martín-
dc.contributor.authorHernández Sanjaime, Rocío-
dc.contributor.authorLópez-Espín, Jose J.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-18T12:15:58Z-
dc.date.available2025-01-18T12:15:58Z-
dc.date.created2020-
dc.identifier.citationJournal of Computational and Applied Mathematicses_ES
dc.identifier.issn1879-1778-
dc.identifier.issn0377-0427-
dc.identifier.urihttps://hdl.handle.net/11000/34948-
dc.description.abstractConventional simultaneous equation models assume that the error terms are serially independent. In some situations, data may present hierarchical or grouped structure and this assumption may be invalid. A new multivariate model referred as to Multilevel Simultaneous Equation Model (MSEM) is developed under this motivation. The maximum likelihood estimation of the parameters of an MSEM is considered. A matrix-valued distribution, namely, the matrix normal distribution, is introduced to incorporate an among-row and an among-column covariance matrix structure in the specification of the model. In the absence of an analytical solution of the system of likelihood equations, a general-purpose optimization solver is employed to obtain the maximum likelihood estimators. In a first approach to the solution of the problem, the adequacy of the matrix normal distribution is evaluated empirically in the case in which the double covariance structure is known. Using simulated data under the model assumptions, the performance of the maximum likelihood estimator (MLE) is assessed with regard to other conventional alternatives such as two-stage least squares estimator (2SLS).es_ES
dc.formatapplication/pdfes_ES
dc.format.extent9es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries366es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultilevel simultaneous equation modeles_ES
dc.subjectMaximum likelihood estimationes_ES
dc.subjectMatrix normal distributiones_ES
dc.subjectSimultaneous equation modeles_ES
dc.subjectMultilevel modeles_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleMultilevel simultaneous equation model: A novel specification and estimation approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.cam.2019.112378es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 2020_Multilevel simultaneous equation model A novel specification and estimation approach.pdf

310,68 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.