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a b s t r a c t

Conventional simultaneous equation models assume that the error terms are serially
independent. In some situations, data may present hierarchical or grouped structure
and this assumption may be invalid. A new multivariate model referred as to Multi-
level Simultaneous Equation Model (MSEM) is developed under this motivation. The
maximum likelihood estimation of the parameters of an MSEM is considered. A matrix-
valued distribution, namely, the matrix normal distribution, is introduced to incorporate
an among-row and an among-column covariance matrix structure in the specification of
the model. In the absence of an analytical solution of the system of likelihood equations,
a general-purpose optimization solver is employed to obtain the maximum likelihood
estimators. In a first approach to the solution of the problem, the adequacy of the
matrix normal distribution is evaluated empirically in the case in which the double
covariance structure is known. Using simulated data under the model assumptions, the
performance of the maximum likelihood estimator (MLE) is assessed with regard to other
conventional alternatives such as two-stage least squares estimator (2SLS).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The limitations of classic statistical models to accurately reproduce the complexity of problems in which data are
hierarchically structured or there is endogeneity between variables make the use of new methodological techniques
necessary. Multilevel models and simultaneous equation models (SEM) have been developed for the statistical analysis of
hierarchy and simultaneity, respectively. Nevertheless, models combining endogeneity and hierarchically structured data
open a new line of research. The literature handling this mixture of factors is scarce and limited to recursive models.

The present paper addresses the estimation of the parameters of a Multilevel Simultaneous Equation Model (MSEM),
that is, a SEM in which observed data are clustered into independent groups. An among-row and among-column
covariance matrix structure is considered in order to take into account data correlation within groups. The matrix
normal distribution allows to incorporate this specific patterned matrix in the estimation process and seems to be
appropriate for this purpose. Further details of this distribution will be described in Section 3. Alternative matrix non-
normal distributions, for example the matrix Student-t distribution, have also been assumed in recent studies to estimate
parameters incorporating variability among individuals [1].

Previously, matrix normal distribution has been applied to the analysis of multivariate repeated measurements [2]. In
this context, one can encompass an m-variate response observed on n occasions, either m variables measured at n time
points for one subject or m variables measured for n subjects that belong to the same group, yielding in both situations
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an n×m observation matrix X . It should be noted that univariate repeated measurements and growth curves (also known
as latent trajectory models where the repeated measurements are viewed as outcomes that depend on some metric of
time (e.g. age, day or wave of measurement)) correspond to the m = 1 case. In these types of model analysing change,
one variable is observed on n occasions and the degenerate matrix normal distribution is applied [3].

In the SEM estimation framework, it is usual to assume that errors are generated by a multivariate procedure with
uncorrelated observations. In general, the errors have been supposed to follow a multivariate normal distribution [4].
Multilevel models allow dealing with grouped data but have been scarcely developed for multivariate response [5]. The
aim of this paper is to merge multivariate response models with simultaneity and clustered data. Given the double
covariance matrix structure, it is possible to bring these two relevant situations together: multivariate response as in
a SEM and grouped correlated observations as in multilevel models.

Simultaneous equation models have been traditionally used in Econometrics, the best-known examples are the Klein’s
Model [6] or the macroeconomic IS-LM models [7]. However, their use has also been recently extended to other fields
such as health sciences for modelling complex phenotypes [8] or even transport research for modelling the air traffic
in the New York area [9]. Multilevel models have been widely implemented in cross-sectional studies from social and
biomedical sciences in which units are naturally grouped at different levels (e.g. students in schools, voters in districts,
etc.) or in longitudinal data such as clinical trials, when the same individual or unit response is repeatedly measured at
several time points [10–12].

Applications of multilevel simultaneous equation modelling can be mainly found in studies analysing resources
allocation in health or educational systems [13,14]. Nonetheless, the approach adopted basically consists of a multilevel
model in which the endogeneity of some of the variables is adjusted including a second equation that creates a recursive
simultaneous equation model. The extension proposed in this paper would not be confined to recursive models and aims
to expand such practical situations.

Under the matrix normal distribution assumption, a random sample of independent and identically distributed (i.i.d.)
groups provides the basis to derive the joint density of the new model. The parameters estimation is carried out via the
maximum likelihood method. In the absence of a closed solution, a data sample is simulated and the maximum likelihood
estimator is examined calling the R optimization function nlm from the stats package [15].

The rest of the article is organized as follows: Section 2 includes a brief overview of the statistical models employed
and their most relevant characteristics. In Section 3, the MSEM is defined and its estimation via the maximum likelihood
method is introduced. The simulation experiment proposed for solving the model in absence of analytic solutions is
described in Section 4. This section also summarizes the numerical results obtained by using simulated data. Finally,
main conclusions are listed in Section 5.

2. Statistical models

2.1. Simultaneous equation models (SEM)

Simultaneous equation model [16] consists of a system of linear regression equations that reflects the presence of
jointly endogenous variables, i.e. the simultaneity between the set of variables of the model. Unlike single-equation models
in which a dependent variable is a function of a set of independent variables, a SEM is a multi-equation model in which
the dependent variable can appear as an explanatory variable in other equations. Formally, the structural form of the
model

Y = YA + XB + U (2.1.1)

where Y = [y1, . . . , ym] is a N ×m matrix of N observations of m endogenous variables, X = [x1, . . . , xk] is a N ×k matrix
of N observations of k non-random predetermined variables which contains both exogenous and lagged endogenous
variables, and U = [u1, . . . , um

] is a N × m matrix of the structural disturbances of the system. The matrices A (m × m)
and B (k × m) are the endogenous and exogenous unknown coefficient matrices, respectively.1

The error terms ut· (t = 1, . . . ,N) are assumed to be serially independent random vectors normally distributed with
0 mean vector and covariance matrix Σ . Thus, the errors may be contemporaneously correlated but are intertemporally
uncorrelated. That is, the rows of U , denoted ut·, have the properties:

u′
t· ∼ N(0, Σ), E(u′

t·, ut ′·) = δtt ′Σ t, t ′ = 1, 2, . . . ,N (2.1.2)

δtt ′ being the Kronecker delta and Σ a positive definite matrix.
Extensions to non-normal errors are possible [see [17] and [18]] but not considered in this work.
In addition, it is assumed that error terms are uncorrelated with the predetermined variables of the system, and there

is no linear dependence among the predetermined variables so that the model has a unique interpretation in terms of its
unknown parameters:

E(X ′U) = 0 and rank(X) = k (2.1.3)

1 By convention, aii = 0, i = 1, 2, . . . ,m.
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Finally, the coefficient matrix (I − A) is assumed to be non-singular and the reduced form of the system becomes

Y = XΠ + V where Π = B(I − A)−1 and V = U(I − A)−1 (2.1.4)

The rows of V , vt·, are independent identically distributed (i.i.d.) random vectors with 0 mean vector and covariance
matrix Ω :

v′
t· ∼ N(0, Ω), vt· = ut·(I − A)−1 and Ω = ((I − A)′)−1Σ(I − A)−1

Cov(vt·
′, vt ′·) = δtt ′Ω t, t ′ = 1, 2, . . . ,N

(2.1.5)

The estimation of the parameters of the model can be tackled in two different ways: using limited information methods
(single-equation methods) or full information techniques (system methods). The first approach that includes estimators
such as indirect least squares (ILS), two-stage least squares (2SLS) or limited information maximum likelihood (LIML)
treats each equation of the system in isolation. Systemmethods such us three-stage least squares (3SLS) or full information
maximum likelihood (FIML) estimate all the unknown parameters of the system simultaneously [19].

2.2. Multilevel models

Multilevel models, also called hierarchical linear models or linear mixed models among other denominations, are
statistical techniques suitable for handling data that have a hierarchical, nested or clustered structure [5]. The existence
of such dependent data structures implies that members of the same group share a set of features that derives in an
intraclass correlation. Group effects describe how strongly units in the same group tend to resemble and influence each
other. The statistical problems of ignoring these relationships may render invalid statistical conclusions [20].

For simplicity’s sake, we will consider the 2-level model hereafter. More levels in the model and complex hierarchical
structures shall be consulted in [5]. Model specification for multilevel models can be formulated in two different but
equivalent approaches. One is based on a single equation that involves both fixed and random effects [21] while the
other approach explicitly specifies the model in two levels with two different equations [22]. In this paper, we adopt the
former representation expressed as follows:

yi = Xiβ + Ziµi + εi i = 1, . . . , l (2.2.1)

where yi represents the ni-response vector for the ith group of ni individuals in cross-sectional data whereas it represents
the ni repeated measurements of the ith subject in longitudinal data, Xi is the ni ×p design matrix of the fixed effects, β is
the p-vector of the fixed effects coefficients to be estimated, Zi is the ni × q design matrix of the random effects, µi is the
q-vector of random effects for the ith group and εi is the ni-vector of residuals [23]. It should be noted that Xi combines
both level-1 and level-2 explanatory variables and Z ′

i s columns are a subset of X ′

i s (q ≤ p) incorporating random effects
µi to yi. That is, any component of β can be allowed to vary randomly by simply including the corresponding columns of
Xi in Zi [24].

The following distributional assumptions are made:

µi ∼ N(0,D)
εi ∼ N(0, Ri)

(2.2.2)

µ1, . . . , µl, ε1, . . . , εl independent
where µi reflects how the subset of regression coefficients for group i deviates from those of the population and εi
comprises the residuals not explained by fixed or random effects. D and Ri are the covariance matrices of the multivariate
normal distributions and l is the total number of groups [25]. The between variance component D is the same for all
groups while Ri may vary across units.

Formally, the introduction of random effects helps to distinguish the conditional (group-specific) mean E(yi|µi)
and marginal (population-average) mean E(yi) as well as group-specific covariance Cov(yi|µi) and population-average
covariance Cov(yi):

E(yi|µi) = Xiβ + Ziµi

E(yi) = Xiβ

Cov(yi|µi) = Ri

Cov(yi) = ZiDZi′ + Ri

(2.2.3)

Therefore, for each group

yi ∼ N(Xiβ, ZiDZi′ + Ri) (2.2.4)

This model structure allows units of the same group to be positively correlated, i.e. to account for intra-subject
variability, and each group to diverge from the population allowing for inter-subject variability [25].

Finally, let consider the general model by stacking up all the groups, yi, into a single column vector

y = Xβ + Zµ + ε (2.2.5)
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where

y =

⎡⎢⎢⎣
y1
y2
...

yl

⎤⎥⎥⎦ X =

⎡⎢⎢⎣
X1
X2
...

Xl

⎤⎥⎥⎦ Z =

⎡⎢⎢⎣
Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zl

⎤⎥⎥⎦ µ =

⎡⎢⎢⎣
µ1
µ2
...

µl

⎤⎥⎥⎦ ε =

⎡⎢⎢⎣
ε1
ε2
...

εl

⎤⎥⎥⎦
Hence,

y ∼ N(Xβ, V ) with V = ZGZ ′
+ R

G = diag(D,D, . . . ,D) R = diag(R1, R2, . . . , Rl)
(2.2.6)

Standard estimation methods in multilevel models are maximum likelihood (ML) [26] and restricted maximum
likelihood (REML) [27]. The aim is to calculate the fixed effects coefficients β as well as the variance components involved
in V . The estimation of the fixed effects given the variance components is straightforward. Unfortunately, solutions to the
variance components are not easy to handle computationally.

Maximum likelihood estimation methods require the maximization of the likelihood function which involves solving
nonlinear equations. Historically, obtaining the estimators was a challenging computationally task. Nowadays, most
statistical software have integrated routines for linear mixed models estimation in their packages: HLM [22], MLwiN [5]
or nlme [23,28].

3. Multilevel simultaneous equation model

3.1. Definition of the Multilevel Simultaneous Equation Model (MESM)

Consider again a simultaneous equation model specified as in (2.1.1), but with observed data clustered into l
independent groups

Yj = YjA + XjB + Ej j = 1, . . . , l independent groups (3.1.1)

Bearing in mind that ignoring groupings may invalidate many of the traditional statistical techniques, model assump-
tions of a SEM shall be modified. The error terms are no longer generated by a multivariate procedure with intertemporally
uncorrelated observations. Therefore, distributional assumptions need to be reformulated.

A first approach to deal with this problem is to consider a double covariance matrix structure. The incorporation
of the among-row and among-column covariance matrices allows specifying a covariance matrix for the variables and
a covariance matrix for the group autocorrelation. This separable variance–covariance structure will provide the error
distribution and will lead to more efficient inference.

Prior to introducing the MLE for the model proposed, the matrix normal distribution must be presented. Let X be an
n×m random matrix and M,U, Σ n×m, n×n, m×m matrices, respectively, with U and Σ non-negative definite. Matrix
M will represent the mean of the distribution whereas U and Σ the temporal autocorrelation and contemporaneous
covariance matrices, respectively. By definition [29], X follows a matrix normal distribution with parameters M , U and
Σ , denoted by X ∼ Nn,m(M,U, Σ), if X has the moment-generating function:

MX (T ) = exp
{
tr(M ′T ) +

1
2
tr(T ′UTV )

}
with T an n × m matrix (3.1.2)

An equivalent definition involving the Kronecker product ⊗ and the vec operator is specified as:

X ∼ Nn,m(M,U, Σ) if vec(X) ∼ Nnp(vec(M), Σ ⊗ U) (3.1.3)

Being U and Σ positive definite matrices, the distribution of X is said to be regular if X has the probability density
function

fX (X) = c−1exp
[
−

1
2
tr{U−1(X − M)Σ−1(X − M)T }

]
(3.1.4)

with c = (2π )nm/2
|U |

m/2
|Σ |

n/2

For model (3.1.1), the condition that each group has the same number of units will be imposed, so that the matrix U
is common to all groups. The notation n1 = n2 = · · · = nl = n will be used hereafter.

Consider again a SEM with clustered data and applying the normal matrix distribution exposed above, for each group
it results

Yj = YjA + XjB + Ej Ej ∼ Nn,m(0,U, Σ) (3.1.5)

with 0, U and Σ an n × m, n × n,m × m matrix, respectively.
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And applying some basic properties:

Yj = XjB(I − A)−1
+ Ej(I − A)−1 and Wj = Yj − XjB(I − A)−1 (3.1.6)

we have that,

Wj ∼ N(0,U, ((I − A)−1)TΣ(I − A)−1) (3.1.7)

3.2. The MLE for a MESM

Under the normality assumption, a random sampling of l groups provides n × m i.i.d. matrices E1, . . . , El, from
which the parameters estimators can be derived using maximum likelihood methods by formulating the appropriate
function.

In view of the error distribution (3.1.6) and replacing Wj by the observable quantities Yj − XjB(I − A)−1, the form of
the joint likelihood function is stated by

f (W1, . . . ,Wl) =

l∏
j=1

fj(Wj) = (2π )−
nml
2 |U |

−
ml
2 |((I − A)−1)TΣ(I − A)−1

|
−

nl
2

exp

⎧⎨⎩−
1
2

l∑
j=1

tr
(
U−1(Yj − XjB(I − A)−1)(I − A)Σ−1(I − A)T (Yj − XjB(I − A)−1)T

)⎫⎬⎭
(3.2.1)

The logarithm of the likelihood function, L = log f (W1, . . . ,Wl), is given by

L = −
nml
2

ln(2π ) −
ml
2

ln|U | −
nl
2
ln|((I − A)−1)TΣ(I − A)−1

|

−
1
2

l∑
j=1

tr
(
U−1(Yj − XjB(I − A)−1)(I − A)Σ−1(I − A)T (Yj − XjB(I − A)−1)T

) (3.2.2)

The application of matrix derivatives [30–32] provides the system of likelihood equations:

∂L
∂U

= −mlU−1
+

ml
2

diag(U−1) +

l∑
j=1

(
U−1(Yj(I − A) − XjB)Σ−1(Yj(I − A) − XjB)TU−1)

−
1
2

l∑
j=1

diag
(
U−1(Yj(I − A) − XjB)Σ−1(Yj(I − A) − XjB)TU−1)

= 0 (3.2.3)

∂L
∂Σ

= −nlΣ−1
+

nl
2
diag(Σ−1) +

l∑
j=1

(
Σ−1(Yj(I − A) − XjB)TU−1(Yj(I − A) − XjB)Σ−1)

−
1
2

l∑
j=1

diag
(
Σ−1(Yj(I − A) − XjB)TU−1(Yj(I − A) − XjB)Σ−1)

= 0 (3.2.4)

∂L
∂B

=

l∑
j=1

(XT
j U

−1Yj)(I − A)Σ−1
−

l∑
j=1

(XT
j U

−1Xj)BΣ−1
= 0 (3.2.5)

∂L
∂(I − A)

= nl((I − A)−1)T −

l∑
j=1

(Y T
j U

−1Yj(I − A)Σ−1
− Y T

j U
−1XjBΣ−1) = 0 (3.2.6)

Let Û , Σ̂ , Â and B̂ denote the maximum likelihood estimators of U , Σ , A, B, respectively. If we isolate some of the
parameters above, it results from (3.2.5) and (3.2.6) that

B̂ =

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦ (I − Â) (3.2.7)

Σ̂ =
1
nl
(I − Â)T

⎧⎨⎩−

l∑
j=1

Y T
j Û

−1XjB̂(I − Â)−1
+

l∑
j=1

Y T
j Û

−1Yj

⎫⎬⎭ (I − Â) (3.2.8)
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Replacing (3.2.7) and (3.2.8) in (3.2.3):

−mlÛ−1
+

ml
2

diag(Û−1)

+

l∑
j=1

⎛⎜⎝Û−1

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠

× V−1

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠

T

Û−1

⎞⎟⎠
−

1
2

l∑
j=1

diag

⎛⎜⎝Û−1

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠

× V−1

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠

T

Û−1

⎞⎟⎠ = 0 (3.2.9)

where

V =
1
nl

⎧⎪⎨⎪⎩−

l∑
j=1

Y T
j Û

−1Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦ +

l∑
j=1

Y T
j Û

−1Yj

⎫⎪⎬⎪⎭
Replacing (3.2.7) and (3.2.8) in (3.2.4):

−nlΣ̂−1
+

nl
2
diag(Σ̂−1)

+

l∑
j=1

⎛⎜⎝Σ̂−1(I − Â)T

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠

T

× Û−1

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠ (I − Â)Σ̂−1

⎞⎟⎠
−

1
2

l∑
j=1

diag

⎛⎜⎝Σ̂−1(I − Â)T

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠

T

× Û−1

⎛⎜⎝Yj − Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦
⎞⎟⎠ (I − Â)Σ̂−1

⎞⎟⎠ = 0 (3.2.10)

where

Σ̂ =
1
nl
(I − Â)T

⎧⎪⎨⎪⎩−

l∑
j=1

Y T
j Û

−1Xj

⎡⎣ l∑
j=1

XT
j Û

−1Xj

⎤⎦−1 ⎡⎣ l∑
j=1

XT
j Û

−1Yj

⎤⎦ +

l∑
j=1

Y T
j Û

−1Yj

⎫⎪⎬⎪⎭ (I − Â)

By replacing (3.2.7) and (3.2.8) in (3.2.3) and also in (3.2.4) the four equation system is reduced to a two equation
system that depends on U and (I −A). System (3.2.9)–(3.2.10) has not a closed analytic solution and the estimation of the
two matrices of parameters U and (I − A) needs to be solved iteratively by designing a two-stage algorithm. Once these
two matrices have been estimated, the pair B̂ and Σ̂ can be obtained by substitution in (3.2.7) and (3.2.8).

4. Numerical results

By definition, the MLE is the global maximum of the (log)-likelihood function. The standard way to proceed to obtain
this estimator implies solving the system of likelihood equations described in Section 3 by setting each derivative equal
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Table 1
Mean Euclidean distances ||Â−A||2,s and ||B̂−B||2,s between estimate Â and parameter A and between estimate B̂ and parameter
B, over s = 10 simulation runs. Mean fitness value and percentage of runs MLE improves 2SLS fitness score. U = (uij) ∈ [−5, 5].

Size 2SLS MLEnlm Fitness %

m k l ||Â − A|| ||B̂ − B|| ||Â − A|| ||B̂ − B|| 2SLS MLEnlm Improvement

2 3 5 1.551.73 1.801.92 1.501.62 1.671.74 −737.53 −267.43 100%
2 3 10 2.222.49 3.504.75 1.420.94 1.912.06 −5019.17 −760.49 80%
2 3 25 0.981.46 1.822.84 0.941.39 1.672.37 −1207.75 −296.99 100%
2 3 50 1.021.42 1.292.09 1.041.42 1.392.09 −50338.95 −672.09 90%

8 12 5 6.411.50 10.893.19 6.401.46 10.823.15 −474 794 −31080.5 90%
8 12 10 8.628.29 13.0312.04 8.638.03 12.9912.02 −932 483 −435 080 100%
8 12 25 7.683.90 11.074.67 7.563.79 11.084.69 −4814615.7 −603524.25 100%
8 12 50 4.313.24 5.703.00 4.323.23 5.692.99 −1 182 940 −1028962.6 100%

10 15 5 9.093.95 16.608.00 9.124.03 16.547.96 −950988.07 −80876.12 100%
10 15 10 6.712.36 9.202.75 6.682.39 9.182.75 −3281584.5 −755413.76 100%
10 15 25 5.161.96 7.212.73 5.171.95 7.192.73 −684 998 313 −424 518 142 100%
10 15 50 5.032.68 6.322.56 5.032.69 6.312.57 −55 048 498 −19 943 667 100%

15 20 5 15.212.35 26.657.54 15.202.35 26.647.54 −32 944 034 −13 236 945 100%
15 20 10 13.133.23 20.007.75 13.133.23 20.007.75 −3 953 024 −1599824.4 100%
15 20 25 11.603.17 15.454.77 11.603.17 15.434.77 −12 677 072 −1599824.4 100%
15 20 50 9.911.98 12.273.44 9.911.98 12.273.43 −1394508.6 −707533.98 100%

to zero. Instead, the scheme here suggested on finding the MLE is to use a generic optimization solver based on numerical
methods. The idea, in this paper, is simply to obtain a first approach to the MLE by setting up starting parameter values
for the log-likelihood function and computing the nlm optimization solver included in the statistical software R.

Since the maximization of the log-likelihood function is a nonlinear problem, calculations for obtaining the MLE of
the model proposed are cumbersome and numerical procedures are often sensitive to initial values. At this point, two
situations will be distinguished: (1) estimation of coefficient matrices A and B for known covariance matrices U and Σ
and (2) estimation of A and B with an unknown covariance structure.

In this paper, we focus on the estimation in MSEMs with known covariance matrices U and Σ . In the absence of a
priori information, the choice of Â0 = A2SLS and B̂0 = B2SLS will generally constitute a suitable initial solution for Â and B̂
although it postulates intertemporally uncorrelated observations.

The experiment aims to compare 2SLS algorithm and the optimization function nlm for different sizes of an MSEM
in order to determine the most efficient method in each case. These two techniques differ in nature, 2SLS is based on
least squares and thus minimizes the sum of squared residuals while the nlm function is applied to obtain the maximum
of the likelihood function. In a SEM, 2SLS and limited information maximum likelihood estimators are asymptotically
equivalent [19]. We seek to analyse whether the MLE for the new model proposed obtains better estimates than the 2SLS
estimator in presence of serial dependence.

Experiments have been executed in a parallel NUMA node with 4 Intel hexa-core Nehalem-EX EC E7530, with 24 cores,
at 1.87 GHz and 32 GB of RAM. All tests were carried out with a C code, including the call of the optimization function
nlm of R. Namely, the R statistical package used is GNU R version 3.5.2.

Four different values for endogenous and exogenous variables were considered and l = 5, 10, 25, 50. Whatever the
problem size, the number of observations in each group is n = 5. Tables 1 and 2 show the experiment outcomes for
the same among-column covariance matrix Σ , but two different among-row covariance matrices U of the error terms
distribution. In both cases, error disturbances Ej in Eq. (3.1.5) were generated by using the property stated in [29]: If
Zj = (zst ) denotes an n × m random matrix with zst (s = 1, . . . , n; t = 1, . . . ,m) i.i.d. N(0, 1), then

Ej = U1/2ZjΣ1/2
∼ Nn,m(0,U, Σ) j = 1, . . . , l

On the basis of the simulation results, the fitness value of the likelihood function provided by the optimization solver
is the same as the likelihood value given by the 2SLS estimator or enhances it in all cases. Tables 1 and 2 show the
percentage of simulation runs in which the fitness value of likelihood function calculated by the optimization solver purely
outperforms the 2SLS fitness likelihood value and also the mean fitness value in each case. As a measure of the dispersion
of the estimator around the parameter, the mean Euclidean distance between estimate and parameter is evaluated.

For example in Table 1, for a problem size m = 8, k = 12, l = 5 and n = 5 the optimization solver score outperforms
fitness 2SLS value 90% of the simulation runs and 10% of the times both techniques obtain the same likelihood value.
The mean fitness value illustrates this improvement being −474794 for 2SLS and −31080.5 for the maximum likelihood
method. Moreover, the mean Euclidean norm of the coefficient matrices is closer to the parameters using the maximum
likelihood estimator. For the endogenous variables, the distance between estimate and parameter over s = 10 simulation
runs is 6.41 with a standard deviation of 1.50 with 2SLS and 6.40 with a standard deviation of 1.46 with the MLE. The
same situation is repeated for the exogenous variables.

From the results, one can gather that the MLE tends to outperform the 2SLS fitness score for small values of U , that is
when the serial dependence is not very strong, as shown in Table 1. Nevertheless, the greater the U values are, the more
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Table 2
Mean Euclidean distances ||Â − A||2,s and ||B̂ − B||2,s between estimate Â and parameter A and between estimate B̂ and
parameter B, over s = 10 simulation runs. Mean fitness value and percentage of runs MLE improves 2SLS fitness score.
U = (uij) ∈ [−500, 500].

Size 2SLS MLEnlm Fitness %

m k l ||Â − A0|| ||B̂ − B0|| ||Â − A0|| ||B̂ − B0|| 2SLS MLEnlm Improvement

2 3 5 1.601.46 4.104.72 1.631.48 4.204.64 −4355.14 −446.46 60%
2 3 10 1.401.61 2.061.85 1.311.51 1.901.79 −19732.70 −786.22 70%
2 3 25 0.700.94 1.692.66 0.690.94 1.672.68 −2659.69 −1661.99 40%
2 3 50 0.900.95 2.565.38 0.981.01 2.635.37 −6870.14 −5600.67 20%

8 12 5 8.273.09 16.868.73 8.163.07 16.778.60 −1.18E+10 −90849708 100%
8 12 10 7.024.05 10.785.81 6.954.03 10.755.75 −2 409 591 512 −12 709 197 80%
8 12 25 4.892.01 6.702.42 4.962.08 6.722.45 −4461250.85 −761458.57 100%
8 12 50 3.171.25 4.271.75 3.201.25 4.281.75 −6406963.37 −501370.69 80%

10 15 5 9.321.90 16.053.04 9.311.90 16.033.05 −12 121 082 −146919.62 90%
10 15 10 11.134.35 16.898.39 11.094.31 16.898.38 −180 931 364 −18 311 430 90%
10 15 25 8.784.85 13.807.67 8.774.85 13.777.69 −6033087.5 −10361773.7 100%
10 15 50 5.462.22 7.421.89 5.452.22 7.401.88 −20 594 215 −10 283 613 100%

15 20 5 15.262.57 33.7817.26 15.242.60 33.7517.23 −825513.65 −236981.94 100%
15 20 10 14.653.27 24.088.00 14.653.28 24.077.99 −793610.27 −455702.25 100%
15 20 25 11.383.01 16.635.64 11.373.02 16.605.63 −1.17E + 11 −994 995 734 80%
15 20 50 9.332.18 11.572.42 9.332.19 11.562.42 −3518530.8 −2077883.1 60%

cases the MLE obtains the same 2SLS fitness score, as shown in Table 2. One of the reasons is attributed to increasing
difficulties in the calculations needed for the implementation of the optimization solver.

Expectedly, according to the tables above, dispersion decreases when the sample size l increases, so Â and B̂ are
consistent estimators of A and B, respectively. In each problem, there is little difference in the mean Euclidean distance
between estimate and parameter for the 2SLS algorithm and the ML method. However, in general, the MLE shows lower
values of dispersion. In both tables, the exogenous coefficient matrices show the largest values in the mean Euclidean
norm.

5. Conclusions

The introduction of a double variance structure in a SEM in which the assumption of intertemporally uncorrelated error
terms is violated lays the basis for the development of a modified model that we referred to as MSEM. The maximum
likelihood (ML) estimation of an MSEM has been set out. In the absence of an analytical solution of the system of likelihood
equations, the estimation of an MSEM has been carried out using a general-purpose optimization solver with simulated
data under the assumption of known variance–covariance matrices.

In a first approach, selecting the 2SLS estimates of the coefficient matrices as starting values for the optimization solver
has empirically proved that the obtained estimates are closer to the parameter than those calculated when the serial
dependence of the errors is ignored. However, limitations in the optimization method integrated in the solver currently
used to find the maximum of the likelihood function might underperform MLE. For this reason, other alternatives need
to be explored and other general-purpose optimization solvers not based on gradient methods should be examined.

The estimation of the variance matrices is not straightforward and in our humble opinion, we consider that it requires
a deep and separate study. Thus, the development of a complete methodology for estimating the parameters of a MSEM,
including the variance components of the model in the case in which these parameters are unknown must be incorporated
as future work. Moreover, it is interesting to include the development of restricted maximum likelihood method (REML)
for MSEM and to compare estimates of variance components with maximum likelihood results. Finally, extensions of
MSEM to a matrix non-Gaussian distribution of errors must be considered as further work.
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