Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34839

Chain recurrence and structure of ω-limit sets of multivalued semiflows


no-thumbnailView/Open:

 CPAA2020 Chain.pdf



369,34 kB
Adobe PDF
Share:

This resource is restricted

Title:
Chain recurrence and structure of ω-limit sets of multivalued semiflows
Authors:
Valero, José
Kasyanov, Pavlo  
Kapustyan, Oleksiy  
Editor:
American Institute of Mathematical Sciences (AIMS)
Department:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Issue Date:
2020
URI:
https://hdl.handle.net/11000/34839
Abstract:
We study properties of ω-limit sets of multivalued semiflows like chain recurrence or the existence of cyclic chains. First, we prove that under certain conditions the ω-limit set of a trajectory is chain recurrent, applying this result to an evolution differential inclusion with upper semicontinous right-hand side. Second, we give conditions ensuring that the ω-limit set of a trajectory contains a cyclic chain. Using this result we are able to check that the ω-limit set of every trajectory of a reaction-diffusion equation without uniqueness of solutions is an equilibrium.
Keywords/Subjects:
Multivalued semiflows
ω-limit set
global attractor
differential inclusions
reaction-diffusion equations
structure
asymptotic behaviour
Knowledge area:
CDU: Ciencias puras y naturales: Matemáticas
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
http://dx.doi.org/10.3934/cpaa.2020096
Appears in Collections:
Artículos Estadística, Matemáticas e Informática



Creative Commons ???jsp.display-item.text9???