Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34510
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMollá, Nuria-
dc.contributor.authorRabasa, Alejandro-
dc.contributor.authorRodriguez-Sala, Jesus Javier-
dc.contributor.authorSánchez Soriano, Joaquín-
dc.contributor.authorFerrándiz, Antonio-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-15T19:29:50Z-
dc.date.available2025-01-15T19:29:50Z-
dc.date.created2021-12-
dc.identifier.citationMathematics 2022, 10(1), 16es_ES
dc.identifier.issn2227-7390-
dc.identifier.urihttps://hdl.handle.net/11000/34510-
dc.description.abstractData science is currently one of the most promising fields used to support the decisionmaking process. Particularly, data streams can give these supportive systems an updated base of knowledge that allows experts to make decisions with updated models. Incremental Decision Rules Algorithm (IDRA) proposes a new incremental decision-rule method based on the classical ID3 approach to generating and updating a rule set. This algorithm is a novel approach designed to fit a Decision Support System (DSS) whose motivation is to give accurate responses in an affordable time for a decision situation. This work includes several experiments that compare IDRA with the classical static but optimized ID3 (CREA) and the adaptive method VFDR. A battery of scenarios with different error types and rates are proposed to compare these three algorithms. IDRA improves the accuracies of VFDR and CREA in most common cases for the simulated data streams used in this work. In particular, the proposed technique has proven to perform better in those scenarios with no error, low noise, or high-impact concept driftses_ES
dc.formatapplication/pdfes_ES
dc.format.extent17es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata mining methods for data streamses_ES
dc.subjectexplainable temporal data analysises_ES
dc.subjectclassification methodses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias purases_ES
dc.titleIncremental Decision Rules Algorithm: A Probabilistic and Dynamic Approach to Decisional Data Stream Problemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/math10010016es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 _5 IncremDecisRules.pdf

913,57 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.