Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34437

Short-Term Load Forecasting: Revising How Good We Actually Are


no-thumbnailVer/Abrir:

 Short-term_load_forecasting_Revising_how_good_we_actually_are.pdf



725,98 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Short-Term Load Forecasting: Revising How Good We Actually Are
Autor :
López García, Miguel
VALERO, SERGIO  
Senabre, Carolina  
Gabaldon, Antonio  
Editor :
IEEE
Departamento:
Departamentos de la UMH::Ingeniería Mecánica y Energía
Fecha de publicación:
2012
URI :
https://hdl.handle.net/11000/34437
Resumen :
This paper proposes the use of an indicator of the predictability of the load series along with an accuracy value such as Mean Average Percentage Error as standard measures of load forecasting performance. Over the last 10 years, there has been a significant increase in load forecasting models proposed in engineering journals. Most of these models provide a description of the inner design of the model, the results from applying this model to a specific data base and the conclusions drawn from this application. However, a single accuracy value may not be sufficient to describe the performance of the model when applied to other data bases. The aim of this paper is to provide researchers with a tool that is able to assess the predictability of a load series and, therefore, contextualize the forecasting accuracy reported. Thirteen different data bases were used to determine its validity.
Palabras clave/Materias:
Forecasting
power demand
performance evaluation
frequency domain analysis
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria
Tipo de documento :
info:eu-repo/semantics/conferenceObject
Derechos de acceso:
info:eu-repo/semantics/closedAccess
DOI :
http://dx.doi.org/10.1109/PESGM.2012.6345392
Aparece en las colecciones:
Congresos, ponencias y comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.