Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34437
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez García, Miguel-
dc.contributor.authorVALERO, SERGIO-
dc.contributor.authorSenabre, Carolina-
dc.contributor.authorGabaldon, Antonio-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2025-01-12T18:10:45Z-
dc.date.available2025-01-12T18:10:45Z-
dc.date.created2012-
dc.identifier.citation2012 IEEE Power and Energy Society General Meetinges_ES
dc.identifier.urihttps://hdl.handle.net/11000/34437-
dc.description.abstractThis paper proposes the use of an indicator of the predictability of the load series along with an accuracy value such as Mean Average Percentage Error as standard measures of load forecasting performance. Over the last 10 years, there has been a significant increase in load forecasting models proposed in engineering journals. Most of these models provide a description of the inner design of the model, the results from applying this model to a specific data base and the conclusions drawn from this application. However, a single accuracy value may not be sufficient to describe the performance of the model when applied to other data bases. The aim of this paper is to provide researchers with a tool that is able to assess the predictability of a load series and, therefore, contextualize the forecasting accuracy reported. Thirteen different data bases were used to determine its validity.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent6es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectForecastinges_ES
dc.subjectpower demandes_ES
dc.subjectperformance evaluationes_ES
dc.subjectfrequency domain analysises_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinariaes_ES
dc.titleShort-Term Load Forecasting: Revising How Good We Actually Arees_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1109/PESGM.2012.6345392es_ES
Aparece en las colecciones:
Congresos, ponencias y comunicaciones


no-thumbnailVer/Abrir:

 Short-term_load_forecasting_Revising_how_good_we_actually_are.pdf



725,98 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.