Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/34243
Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion
View/Open: JDE2022.pdf
393,17 kB
Adobe PDF
Compartir:
Este recurso está restringido
Title: Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion |
Authors: Xu, Jiaohui Caraballo, Tomás Valero, José |
Editor: Elsevier |
Department: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Issue Date: 2022-08-05 |
URI: https://hdl.handle.net/11000/34243 |
Abstract:
In this paper, the asymptotic behavior of a semilinear heat equation with long time memory and nonlocal diffusion is analyzed in the usual set-up for dynamical systems generated by differential equations
with delay terms. This approach is different from ones used in the previous published literature on the long
time behavior of heat equations with memory, which is carried out by the Dafermos transformation. As a
consequence, the obtained results provide complete information about the attracting sets for the original
problem, instead of the transformed one. In particular, the proved results also generalize and complete
previous literature in the local case.
|
Keywords/Subjects: Non-local partial differential equations Long time memory Dafermos transformation Global attractors |
Knowledge area: CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras |
Type of document: info:eu-repo/semantics/article |
Access rights: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI: https://doi.org/10.1016/j.jde.2022.04.033 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.