Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34243

Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion


no-thumbnailView/Open:

 JDE2022.pdf



393,17 kB
Adobe PDF
Compartir:

Este recurso está restringido

Title:
Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion
Authors:
Xu, Jiaohui
Caraballo, Tomás
Valero, José
Editor:
Elsevier
Department:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Issue Date:
2022-08-05
URI:
https://hdl.handle.net/11000/34243
Abstract:
In this paper, the asymptotic behavior of a semilinear heat equation with long time memory and nonlocal diffusion is analyzed in the usual set-up for dynamical systems generated by differential equations with delay terms. This approach is different from ones used in the previous published literature on the long time behavior of heat equations with memory, which is carried out by the Dafermos transformation. As a consequence, the obtained results provide complete information about the attracting sets for the original problem, instead of the transformed one. In particular, the proved results also generalize and complete previous literature in the local case.
Keywords/Subjects:
Non-local partial differential equations
Long time memory
Dafermos transformation
Global attractors
Knowledge area:
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1016/j.jde.2022.04.033
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.