Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/33507
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPérez-Aranda, Adrián-
dc.contributor.authorAndrés Rodríguez, Laura-
dc.contributor.authorFeliu-Soler, Albert-
dc.contributor.authorNúñez, Christian-
dc.contributor.authorStephan-Otto, Christian-
dc.contributor.authorPastor-Mira, María Ángeles-
dc.contributor.authorLópez Roig, Sofía-
dc.contributor.authorPeñacoba, Cecilia-
dc.contributor.authorPita Calandre, Elena-
dc.contributor.authorSlim, Mahmoud-
dc.contributor.authorSalgueiro, Monika-
dc.contributor.authorFeixas, Guillem-
dc.contributor.authorLuciano, Juan Vicente-
dc.contributor.otherDepartamentos de la UMH::Ciencias del Comportamiento y saludes_ES
dc.date.accessioned2024-10-16T08:48:11Z-
dc.date.available2024-10-16T08:48:11Z-
dc.date.created2019-04-
dc.identifier.citationPAIN 160(4):p 908-921, April 2019es_ES
dc.identifier.issn1872-6623-
dc.identifier.issn0304-3959-
dc.identifier.urihttps://hdl.handle.net/11000/33507-
dc.description.abstractThe main objective of this study is to identify fibromyalgia syndrome (FMS) clusters using the Revised Fibromyalgia Impact Questionnaire (FIQR), and to examine whether the clusters differ in sociodemographic characteristics, clinical measures, direct and indirect costs, levels of inflammatory markers, and brain morphometry. A hierarchical cluster analysis was performed to classify a large, pooled Spanish sample of patients with FMS (N 5 947) using the FIQR as clustering variable. A latent profile analysis was subsequently conducted to confirm the optimal number of FMS clusters. To examine external validity, a battery of clinical measures, economic costs, inflammatory markers, and gray matter volumes of relevant cortical and subcortical areas were analyzed. We also compared the discriminant validity of the clusters with the original FIQR severity categories. To promote the implementation in real-world clinical practice, we built a free online cluster calculator. Our findings indicated that a four-cluster solution more clearly captured the heterogeneity of FIQR data and provided the best fit. This cluster solution allowed for detection of differences for most clinical outcomes and economic costs. Regarding the inflammatory and brain-based biomarkers, differences were found in C-reactive protein, and tendencies were found in the right medial prefrontal cortex, the right parahippocampal gyrus, and the right middle cingulate cortex; brain regions associated with executive functions and pain processing. The original FIQR categories presented similar results, although their precision in discriminating among the nonextreme categories (ie, moderate and severe) was not sound. These findings are discussed in relation to previous research on FMS clustering.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherLippincott, Williams & Wilkinses_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFibromyalgiaes_ES
dc.subjectFIQRes_ES
dc.subjectCluster analysises_ES
dc.subjectLatent profile analysises_ES
dc.subjectEconomic costses_ES
dc.subject.otherCDU::1 - Filosofía y psicología::159.9 - Psicologíaes_ES
dc.titleClustering a large Spanish sample of patients with fibromyalgia using the Fibromyalgia Impact Questionnaire–Revised: differences in clinical outcomes, economic costs, inflammatory markers, and gray matter volumeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1097/j.pain.0000000000001468es_ES
Aparece en las colecciones:
Artículos Ciencias del Comportamiento y Salud


no-thumbnailVer/Abrir:

 2019 Pérez-Aranda et al Clustering_a_large_Spanish_sample_of_patients_with.15.pdf



366,01 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.