Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/33439

Detection of hollow heart disorder in watermelons using vibrational test and machine learning


Thumbnail

View/Open:
 1-s2.0-S2666154323002867-main.pdf

6,59 MB
Adobe PDF
Share:
Title:
Detection of hollow heart disorder in watermelons using vibrational test and machine learning
Authors:
Simon Portillo, Francisco J.  
Abellan-López, D.
Fabra-Rodriguez, M.
Peral-Orts, R.
Sánchez-Lozano, Miguel  
Editor:
Elsevier
Department:
Departamentos de la UMH::Ingeniería Mecánica y Energía
Issue Date:
2023-09
URI:
https://hdl.handle.net/11000/33439
Abstract:
The presence of internal voids in watermelons has an impact on the costs of producers and on consumer confidence. Various studies have shown that the vibrational parameters of the fruit are related to maturity, quality and the existence of internal defects. A method for the detection of internal voids in seedless watermelons based on vibrational parameters obtained in impact hammer tests and machine learning is presented. After a statistical study of the test results, the frequency of the first peak of the vibrational response and the density of the watermelon are selected as predictors to be used in the classification algorithms. The accuracy of detecting hollow watermelons increases if firmness estimator is introduced as a predictor. Probabilities of success above 89% in the detection of internal voids have been achieved using different classification algorithm.
Keywords/Subjects:
Watermelon
Non-destructive testing
Vibrational method
Hollow detection
Classifier algorithms
Machine learning
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
application/pdf
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1016/j.jafr.2023.100779
Appears in Collections:
Artículos Ingeniería Mecánica y Energía



Creative Commons ???jsp.display-item.text9???