Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/33439
Detection of hollow heart disorder in watermelons using vibrational test and machine learning
Title: Detection of hollow heart disorder in watermelons using vibrational test and machine learning |
Authors: Simon Portillo, Francisco J. Abellan-López, D. Fabra-Rodriguez, M. Peral-Orts, R. Sánchez-Lozano, Miguel |
Editor: Elsevier |
Department: Departamentos de la UMH::Ingeniería Mecánica y Energía |
Issue Date: 2023-09 |
URI: https://hdl.handle.net/11000/33439 |
Abstract:
The presence of internal voids in watermelons has an impact on the costs of producers and on consumer confidence. Various studies have shown that the vibrational parameters of the fruit are related to maturity, quality
and the existence of internal defects. A method for the detection of internal voids in seedless watermelons based
on vibrational parameters obtained in impact hammer tests and machine learning is presented. After a statistical
study of the test results, the frequency of the first peak of the vibrational response and the density of the
watermelon are selected as predictors to be used in the classification algorithms. The accuracy of detecting
hollow watermelons increases if firmness estimator is introduced as a predictor. Probabilities of success above
89% in the detection of internal voids have been achieved using different classification algorithm.
|
Keywords/Subjects: Watermelon Non-destructive testing Vibrational method Hollow detection Classifier algorithms Machine learning |
Knowledge area: CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Type of document: application/pdf |
Access rights: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI: https://doi.org/10.1016/j.jafr.2023.100779 |
Appears in Collections: Artículos Ingeniería Mecánica y Energía
|
???jsp.display-item.text9???