Por favor, use este identificador para citar o enlazar este ítem: 
        https://hdl.handle.net/11000/33434
    
    
    
    
Low-Cost Road-Surface Classification System Based on Self-Organizing Maps
 
| Título : Low-Cost Road-Surface Classification System Based on Self-Organizing Maps
 | 
| Autor : Sánchez Andrades, Ignacio
  CASTILLO AGUILAR, JUAN JESUS
  Velasco Garcia, Juan Maria
  Cabrera Carrillo, Juan Antonio
  Sánchez-Lozano, Miguel
 | 
| Editor : MDPI
 | 
| Departamento: Departamentos de la UMH::Ingeniería Mecánica y Energía
 | 
| Fecha de publicación: 2020-10-23
 | 
| URI : https://hdl.handle.net/11000/33434
 | 
| Resumen : Expanding the performance and autonomous-decision capability of driver-assistance
systems is critical in today’s automotive engineering industry to help drivers and reduce accident
incidence. It is essential to provide vehicles with the necessary perception systems, but without
creating a prohibitively expensive product. In this area, the continuous and precise estimation
of a road surface on which a vehicle moves is vital for many systems. This paper proposes a
low-cost approach to solve this issue. The developed algorithm resorts to analysis of vibrations
generated by the tyre-rolling movement to classify road surfaces, which allows for optimizing
vehicular-safety-system performance. The signal is analyzed by means of machine-learning
techniques, and the classification and estimation of the surface are carried out with the use of a
self-organizing-map (SOM) algorithm. Real recordings of the vibration produced by tyre rolling on
six different types of surface were used to generate the model. The efficiency of the proposed model
(88.54%) and its speed of execution were compared with those of other classifiers in order to evaluate
its performance.
 | 
| Palabras clave/Materias: data acquisition
 vibrations
 surface estimation
 machine learning
 automobile systems
 | 
| Área de conocimiento : CDU:  Ciencias aplicadas:  Ingeniería. Tecnología
 | 
| Tipo de documento : info:eu-repo/semantics/article
 | 
| Derechos de acceso: info:eu-repo/semantics/openAccess
 Attribution-NonCommercial-NoDerivatives 4.0 Internacional
 | 
| DOI : https://doi.org/10.3390/s20216009
 | 
| Publicado en: Sensors 2020, 20, 6009
 | 
| Aparece en las colecciones: Artículos Ingeniería Mecánica y Energía
 
 | 
 
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
         La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.
        La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.