Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/33434
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSánchez Andrades, Ignacio-
dc.contributor.authorCASTILLO AGUILAR, JUAN JESUS-
dc.contributor.authorVelasco Garcia, Juan Maria-
dc.contributor.authorCabrera Carrillo, Juan Antonio-
dc.contributor.authorSánchez-Lozano, Miguel-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2024-10-07T08:32:53Z-
dc.date.available2024-10-07T08:32:53Z-
dc.date.created2020-10-23-
dc.identifier.citationSensors 2020, 20, 6009es_ES
dc.identifier.issn1424-8220-
dc.identifier.urihttps://hdl.handle.net/11000/33434-
dc.description.abstractExpanding the performance and autonomous-decision capability of driver-assistance systems is critical in today’s automotive engineering industry to help drivers and reduce accident incidence. It is essential to provide vehicles with the necessary perception systems, but without creating a prohibitively expensive product. In this area, the continuous and precise estimation of a road surface on which a vehicle moves is vital for many systems. This paper proposes a low-cost approach to solve this issue. The developed algorithm resorts to analysis of vibrations generated by the tyre-rolling movement to classify road surfaces, which allows for optimizing vehicular-safety-system performance. The signal is analyzed by means of machine-learning techniques, and the classification and estimation of the surface are carried out with the use of a self-organizing-map (SOM) algorithm. Real recordings of the vibration produced by tyre rolling on six different types of surface were used to generate the model. The efficiency of the proposed model (88.54%) and its speed of execution were compared with those of other classifiers in order to evaluate its performance.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent21es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata acquisitiones_ES
dc.subjectvibrationses_ES
dc.subjectsurface estimationes_ES
dc.subjectmachine learninges_ES
dc.subjectautomobile systemses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleLow-Cost Road-Surface Classification System Based on Self-Organizing Mapses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/s20216009es_ES
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía


Vista previa

Ver/Abrir:
 sensors-20-06009.pdf

3,54 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.