Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/32596

On the limit of solutions for a reaction-di¤usion equation containing fractional Laplacians


no-thumbnailVer/Abrir:

 375AMOrevised UMH.pdf



241,31 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
On the limit of solutions for a reaction-di¤usion equation containing fractional Laplacians
Autor :
Xu, Jiaohui
Caraballo, Tomas  
Valero, José  
Editor :
Plan S Approved
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2023-12-20
URI :
https://hdl.handle.net/11000/32596
Resumen :
A kind of nonlocal reaction-di¤usion equations on an unbounded domain containing a frac- tional Laplacian operator is analyzed. To be precise, we prove the convergence of solutions of the equation governed by the fractional Laplacian to the solutions of the classical equation governed by the standard Laplacian, when the fractional parameter grows to 1. The existence of global attractors is investigated as well. The novelty of this paper is concerned with the convergence of solutions when the fractional parameter varies, which, as far as the authors are aware, seems to be the rst result of this kind of problems in the literature.
Palabras clave/Materias:
Fractional Laplacian
Convergence of solutions
Global attractors
AMS subject classi cations
35R11, 35A15, 35B41, 35K65
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s00245-023-10090-6
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.